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1. Overview of the Basic Model

∙ Unless stated otherwise, the methods discussed in

these slides are for the case with a large cross

section and small time series.

∙ For a generic i in the population,

yit   t  xit  ci  uit, t  1, . . . ,T,     (1)

where  t is a separate time period intercept, xit is a

1  K vector of explanatory variables, ci is the

time-constant unobserved effect, and the

uit : t  1, . . . ,T are idiosyncratic errors. We

view the ci as random draws along with the

observed variables.

∙ An attractive assumption is contemporaneous

exogeneity conditional on ci :

Euit|xit,ci  0, t  1, . . . ,T.     (2)
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This equation defines  in the sense that under (1)

and (2),

Eyit|xit,ci   t  xit  ci,     (3)

so the j are partial effects holding ci fixed.

∙ Unfortunately,  is not identified only under (2).

If we add the strong assumption Covxit,ci  0,

then  is identified.

∙ Allow any correlation between xit and ci by

assuming strict exogeneity conditional on ci :

Euit|xi1,xi2, . . . ,xiT,ci  0, t  1, . . . ,T,     (4)

which can be expressed as

Eyit|xi,ci  Eyit|xit,ci   t  xit  ci.     (5)

If xit : t  1, . . . ,T has suitable time variation, 

can be consistently estimated by fixed effects (FE)

or first differencing (FD), or generalized least
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squares (GLS) or generalized method of moments

(GMM) versions of them.

∙Make inference fully robust to heteroksedasticity

and serial dependence, even if use GLS. With large

N and small T, there is little excuse not to compute

“cluster” standard errors.

∙ Violation of strict exogeneity: always if xit

contains lagged dependent variables, but also if

changes in uit cause changes in xi,t1 (“feedback

effect”).

∙ Sequential exogeneity condition on ci:

Euit|xi1,xi2, . . . ,xit,ci  0, t  1, . . . ,T     (6)

or, maintaining the linear model,

Eyit|xi1, . . . ,xit,ci  Eyit|xit,ci.     (7)

Allows for lagged dependent variables and other
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feedback. Generally,  is identified under

sequential exogeneity. (More later.)

∙ The key “random effects” assumption is

Eci|xi  Eci.     (8)

Pooled OLS or any GLS procedure, including the

RE estimator, are consistent. Fully robust inference

is available for both.

∙ It is useful to define two correlated random

effects assumptions. The first just defines a linear

projection:

Lci|xi    xi,     (9)

Called the Chamberlain device, after Chamberlain

(1982). Mundlak (1978) used a restricted version

Eci|xi    x̄i,     (10)

where x̄i  T−1∑t1
T xit. Then
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yit   t  xit  x̄i  ai  uit,     (11)

and we can apple pooled OLS or RE because

Eai  uit|xi  0. Both equal the FE estimator of

.

∙ Equation (11) makes it easy to compute a fully

robust Hausman test comparing RE and FE.

Separate covariates into aggregate time effects,

time-constant variables, and variables that change

across i and t:

yit  gt  zi  wit  ci  uit.     (12)

We cannot estimate  by FE, so it is not part of the

Hausman test comparing RE and FE. Less clear is

that coefficients on the time dummies, , cannot be

included, either. (RE and FE estimation only with

aggregate time effects are identical.) We can only
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compare ̂FE and ̂RE M parameters).

∙ Convenient test:

yit on gt, zi, wit, w̄i, t  1, . . . ,T; i  1, . . . ,N,     (13)

which makes it clear there are M restrictions to test.

Pooled OLS or RE, fully robust!

∙Must be cautious using canned procedures, as the

df are often wrong and tests nonrobust.

2. New Insights Into Old Estimators

∙ Consider an extension of the usual model to

allow for unit-specific slopes,

yit  ci  xitbi  uit

Euit|xi,ci,bi  0, t  1, . . . ,T,
    (14)
    (15)

where bi is K  1. We act as if bi is constant for all

i but think ci might be correlated with xit; we apply

usual FE estimator. When does the usual FE
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estimator consistently estimate the population

average effect,   Ebi?

∙ A sufficient condition for consistency of the FE

estimator, along with along with (15) and the usual

rank condition, is

Ebi|ẍit  Ebi  , t  1, . . . ,T     (16)

where ẍit are the time-demeaned covariates. Allows

the slopes, bi, to be correlated with the regressors

xit through permanent components. For example, if

xit  f i  rit, t  1, . . . ,T. Then (16) holds if

Ebi|ri1,ri2, . . . ,riT  Ebi.

∙ Extends to a more general class of estimators.

Write

yit  wtai  xitbi  uit, t  1, . . . ,T     (17)

where wt is a set of deterministic functions of time.
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FE now sweeps away ai by netting out wt from xit.

∙ In the random trend model, wt  1, t. If

xit  f i  hit  rit, then bi can be arbitrarily

correlated with f i,hi.

∙ Generally, need dimwt  T)

∙ Can apply to models with time-varying factor

loads,  t :

yit  xit   tci  uit, t  1, . . . ,T.     (18)

Sufficient for consistency of FE estimator that

ignores the  t is

Covẍit,ci  0, t  1, . . . ,T.     (19)

∙ Now let some elements of xit be correlated with

uir : r  1, . . . ,T, but with strictly exogenous

instruments (conditional on ci. Assume

Euit|zi,ai,bi  0     (20)
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for all t. Also, replace (16) with

Ebi|z̈it  Ebi  , t  1, . . . ,T.     (21)

Still not enough. A sufficient condition is

Covẍit,bi|z̈it  Covẍit,bi, t  1, . . . ,T.     (22)

Covẍit,bi, a K  K matrix, need not be zero, or

even constant across time. The conditional

covariance cannot depend on the time-demeaned

instruments. Then, FEIV is consistent for   Ebi

provided a full set of time dummies is included.

∙ Assumption (22) cannot be expected to hold

when endogenous elements of xit are discrete.

3. Behavior of Estimators without Strict

Exogeneity

∙ Both the FE and FD estimators are inconsistent

(with fixed T, N → ) without the conditional strict
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exogeneity assumption. Under certain assumptions,

the FE estimator can be expected to have less

“bias” (actually, inconsistency) for larger T.

∙ If we maintain Euit|xit,ci  0 and assume

xit,uit : t  1, . . . ,T is “weakly dependent”,

can show

plimN→ ̂FE    OT−1

plimN→ ̂FD    O1.

    (23)

    (24)

∙ Interestingly, still holds if xit : t  1, . . . ,T has

unit roots as long as uit is I(0) and

contemporaneous exogeneity holds.

∙ Catch: if uit is I(1) – so that the time series

“model” is a spurious regression (yit and xit are not

cointegrated), then (23) is no longer true. FD

eliminates any unit roots.

∙ Same conclusions hold for IV versions: FE has
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bias of order T−1 if uit is weakly dependent.

∙ Simple test for lack of strict exogeneity in

covariates:

yit   t  xit  wi,t1  ci  eit     (25)

Estimate the equation by fixed effects and test

H0 :   0.

∙ Easy to test for contemporaneous endogeneity of

certain regressors. Write the model now as

yit1  zit11  yit21  yit31  ci1  uit1,

where, in an FE environment, we want to test

H0 : Eyit3
′ uit1  0 . Write a set of reduced forms

for elements of yit3 as

yit3  zit3  ci3  vit3,

and obtain the FE residuals, v̂it3  yit3 − zit̂3,

where the columns of ̂3 are the FE estimates.
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Then, estimate

yit1  zit11  yit21  yit31  v̂it31  errorit1

by FEIV, using instruments zit,yit3, v̂it3. The test

that yit3 is exogenous is just the (robust) test that

1  0, and the test need not adjust for the first-step

estimation.

4. IV Estimation under Sequential Exogeneity

We now consider IV estimation of the model

yit  xit  ci  uit, t  1, . . . ,T,     (26)

under sequential exogeneity assumptions; the

weakest form is Covxis,uit  0, all s ≤ t.

This leads to simple moment conditions after first

differencing:

Exis
′ Δuit  0, s  1, . . . , t − 1; t  2, . . . ,T.     (27)

Therefore, at time t, the available instruments in the

13



FD equation are in the vector

xit
o ≡ xi1,xi2, . . . ,xit. The matrix of instruments is

Wi  diagxi1
o ,xi2

o , . . . ,xi,T−1
o ,     (28)

which has T − 1 rows. Routine to apply GMM

estimation.

∙ Simple strategy: estimate a reduced form for Δxit

separately for each t. So, at time t, run the

regression Δxit on xi,t−1
o , i  1, . . . ,N, and obtain the

fitted values, Δxit. Then, estimate the FD equation

Δyit  Δxit  Δuit, t  2, . . . ,T     (29)

by pooled IV using instruments (not regressors)

Δxit.

∙ Can suffer from a weak instrument problem when

Δxit has little correlation with xi,t−1
o .

∙ If we assume
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Euit|xit,yi,t−1xi,t−1, . . . ,yi1,xi1,ci  0,     (30)

many more moment conditions are available. Using

linear functions only, for t  3, . . . ,T,

EΔyi,t−1 − Δxi,t−1′yit − xit  0.     (31)

∙ Drawback: we often do not want to assume (30).

Plus, the conditions in (31) are nonlinear in

parameters.

∙ Arellano and Bover (1995) suggested instead the

restrictions

CovΔxit
′ ,ci  0, t  2, . . . ,T,     (32)

which imply linear moment conditions in the levels

equation,

EΔxit
′ yit −  − xit  0, t  2, . . . ,T.     (33)

∙ Simple AR(1) model:
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yit  yi,t−1  ci  uit, t  1, . . . ,T.     (34)

Typically, the minimal assumptions imposed are

Eyisuit  0, s  0, . . . , t − 1, t  1, . . . ,T,     (35)

so for t  2, . . . ,T,

EyisΔyit − Δyi,t−1  0, s ≤ t − 2.     (36)

Again, can suffer from weak instruments when  is

close to unity. Blundell and Bond (1998) showed

that if the condition

CovΔyi1,ci  Covyi1 − yi0,ci  0     (37)

is added to Euit|yi,t−1, . . . ,yi0,ci  0 then

EΔyi,t−1yit −  − yi,t−1  0     (38)

which can be added to the usual moment conditions

(35). We have two sets of moments linear in the

parameters.
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∙ Condition (37) can be intepreted as a restriction

on the initial condition, yi0. Write yi0 as a deviation

from its steady state, ci/1 −  (obtained for || 1

by recursive subsitution and then taking the limit),

as yi0  ci/1 −   ri0. Then

1 − yi0  ci  1 − ri0, and so (37) reduces to

Covri0,ci  0.     (39)

The deviation of yi0 from its SS is uncorrelated

with the SS.

∙ Extensions of the AR(1) model, such as

yit  yi,t−1  zit  ci  uit, t  1, . . . ,T.     (40)

and use FD:

Δyit  Δyi,t−1  Δzit  Δuit, t  1, . . . ,T.     (41)

∙ Airfare example in notes: ̂POLS  −. 126 . 027,

̂IV . 219 . 062, ̂GMM . 333 . 055.
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∙ Arellano and Alvarez (1998) show that the GMM

estimator that accounts for the MA(1) serial

correlation in the FD errors has better properties

when T and N are both large.

5. Pseudo Panels from Pooled Cross Sections

∙ It is important to distinguish between the

population model and the sampling scheme. We are

interested in estimating the parameters of

yt   t  xt  f  ut, t  1, . . . ,T,     (42)

which represents a population defined over T time

periods.

∙ Normalize Ef  0. Assume all elements of xt

have some time variation. To interpret ,

contemporaneous exogeneity conditional on f:

Eut|xt, f  0, t  1, . . . ,T.     (43)
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But, the current literature does not even use this

assumption. We will use an implication of (43):

Eut|f  0, t  1, . . . ,T.     (44)

Because f aggregates all time-constant

unobservables, we should think of (44) as implying

that Eut|g  0 for any time-constant variable g,

whether unobserved or observed.

∙ Deaton (1985) considered the case of

independently sampled cross sections. Assume that

the population for which (42) holds is divided into

G groups (or cohorts). Common is birth year. For a

random draw i at time t, let gi be the group

indicator, taking on a value in 1, 2, . . . ,G. Then ,

by our earlier discussion,

Euit|gi  0.     (45)
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Taking the expected value of (42) conditional on

group membership and using only (45), we have

Eyt|g   t  Ext|g  Ef|g, t  1, . . . ,T.     (46)

This is Deaton’s starting point, and Moffitt (1993).

If we start with (42) under (44), there is no

“randomness” in (46). Later authors have left

ugt
∗  Eut|g in the error term.

∙ Define the population means

g  Ef|g, gt
y  Eyt|g, gt

x  Ext|g     (47)

for g  1, . . . ,G and t  1, . . . ,T. Then for

g  1, . . . ,G and t  1, . . . ,T, we have

gt
y   t  gt

x   g.     (48)

∙ Equation (48) holds without any assumptions

restricting the dependence between xt and ur across

t and r. In fact, xt can contain lagged dependent
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variables or contemporaneously endogenous

variables. Should we be suspicious?

∙ Equation (48) looks like a linear regression

model in the population means, gt
y and gt

x . One

can use a “fixed effects” regression to estimate  t,

g, and .

∙With large cell sizes, Ngt (number of observations

in each group/time period cell), better to treat as a

minimum distance problem. One inefficient MD

estimator is fixed effects applied to the sample

means, based on the same relationship in the

population:

  ∑
g1

G

∑
t1

T

̈gt
x′̈gt

x

−1

∑
g1

G

∑
t1

T

̈gt
x′gt

y     (49)

where ̈gt
x is the vector of residuals from the pooled

21



regression

gt
x on 1, d2, . . . ,dT, c2, ..., cG,     (50)

where dt denotes a dummy for period t and cg is a

dummy variable for group g.

∙ Equation (49) makes it clear that the underlying

model in the population cannot contain a full set of

group/time interactions. We could allow this

feature with individual-level data. The absense of

full cohort/time effects in the population model is

the key identifying restriction.

∙  is not identified if we can write gt
x  t  g

for vectors t and g, t  1, . . . ,T, g  1, . . . ,G. So,

we must exclude a full set of group/time effects in

the structural model but we need some interaction

between them in the distribution of the covariates.
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Even then, identification might be weak if the

variation in ̈gt
x : t  1, . . ,T, g  1, . . . ,G is

small: a small change in the estimates of gt
x can

lead to large changes in ̂.

∙ Estimation by nonseparable MD because

h,  0 are the restrictions on the structural

parameters  given cell means  (Chamberlain,

lecture notes). But given , conditions are linear in

. After working it through, the optimal estimator is

intuitive and easy to obtain. After “FE” estimation,

obtain the residual variances within each cell, ̂gt
2 ,

based on yitg − xit − ̂g −  t, where  is the “FE”

estimate, and so on.

∙ Define “regressors” ̂gt  ̂gt
x′,dt,cg, and let Ŵ

be the GT  K  T  G − 1 stacked matrix (where

we drop, say, the time dummy for the first period.).
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Let Ĉ be the GT  GT diagonal matrix with

̂gt
2 /Ngt/N down the diagonal. The optimal MD

estimator, which is N -asymptotically normal, is

̂  Ŵ ′Ĉ−1Ŵ
−1Ŵ ′Ĉ−1̂y.     (51)

As in separable cases, the efficient MD estimator

looks like a “weighted least squares” estimator and

its asymptotic variance is estimated as

Ŵ ′Ĉ−1Ŵ
−1/N. (Might be better to use resampling

method here.)

∙ Inoue (2007) obtains a different limiting

distribution, which is stochastic, because he treats

estimation of gt
x and gt

y asymmetrically.

∙ Deaton (1985), Verbeek and Nijman (1993), and

Collado (1997), use a different asymptotic analysis.

In the current notation, GT →  (Deaton) or
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G → , with the cell sizes fixed.

∙ Allows for models with lagged dependent

variables, but now the vectors of means contain

redundancies. If

yt   t  yt−1  zt  f  ut, Eut|g  0,     (52)

then the same moments are valid. But, now we

would define the vector of means as gt
y ,gt

z , and

appropriately pick off gt
y in defining the moment

conditions. We now have fewer moment conditions

to estimate the parameters.

∙ The MD approach applies to extensions of the

basic model. Random trend model (Heckman and

Hotz (1989)):

yt   t  xt  f1  f2t  ut.     (53)

gt
y   t  gt

x   g  gt,     (54)
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We can even estimate models with time-varying

factor loads on the heterogeneity:

yt   t  xt  tf  ut,     (55)

gt
y   t  gt

x   tg.     (56)

∙ How can we use a stronger assumption, such as

Eut|zt, f  0, t  1, . . . ,T, for instruments zt, to

more precisely estimate ? Gives lots of potentially

useful moment conditions:

Ezt
′yt|g   tEzt

′|g  Ezt
′xt|g  Ezt

′f|g,     (57)

using Ezt
′ut|g  0.
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