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Control Function and Related Methods
These notes review the control function approach to handling endogeneity in models linear

in parameters, and draws comparisons with standard methods such as 2SLS. Certain nonlinear
models with endogenous explanatory variables are most easily estimated using the CF method,
and the recent focus on average marginal effects suggests some simple, flexible strategies.
Recent advances in semiparametric and nonparametric control function method are covered,
and an example for how one can apply CF methods to nonlinear panel data models is provided.
1. Linear-in-Parameters Models: IV versus Control Functions

Most models that are linear in parameters are estimated using standard IV methods – either
two stage least squares (2SLS) or generalized method of moments (GMM). An alternative, the
control function (CF) approach, relies on the same kinds of identification conditions. In the
standard case where a endogenous explanatory variables appear linearly, the CF approach
leads to the usual 2SLS estimator. But there are differences for models nonlinear in
endogenous variables even if they are linear in parameters. And, for models nonlinear in
parameters, the CF approach offers some distinct advantages.

Let y1 denote the response variable, y2 the endogenous explanatory variable (a scalar for
simplicity), and z the 1  L vector of exogenous variables (which includes unity as its first
element). Consider the model

y1  z11  1y2  u1     (1.1)

where z1 is a 1  L1 strict subvector of z that also includes a constant. The sense in which z is
exogenous is given by the L orthogonality (zero covariance) conditions

Ez′u1  0.     (1.2)

Of course, this is the same exogeneity condition we use for consistency of the 2SLS estimator,
and we can consistently estimate 1 and 1 by 2SLS under (1.2) and the rank condition,
Assumption 2SLS.2.

Just as with 2SLS, the reduced form of y2 – that is, the linear projection of y2 onto the
exogenous variables – plays a critical role. Write the reduced form with an error term as

y2  z2  v2

Ez′v2  0
    (1.3)
    (1.4)

where 2 is L  1. Endogeneity of y2 arises if and only if u1 is correlated with v2. Write the
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linear projection of u1 on v2, in error form, as

u1  1v2  e1,     (1.5)

where 1  Ev2u1/Ev2
2 is the population regression coefficient. By definition, Ev2e1  0,

and Ez′e1  0 because u1 and v2 are both uncorrelated with z.
Plugging (1.5) into equation (1.1) gives

y1  z11  1y2  1v2  e1,     (1.6)

where we now view v2 as an explanatory variable in the equation. As just noted, e1, is
uncorrelated with v2 and z. Plus, y2 is a linear function of z and v2, and so e1 is also
uncorrelated with y2.

Because e1 is uncorrelated with z1, y2, and v2, (1.6) suggests a simple procedure for
consistently estimating 1 and 1 (as well as 1): run the OLS regression of y1 on z1,y2, and v2

using a random sample. (Remember, OLS consistently estimates the parameters in any
equation where the error term is uncorrelated with the right hand side variables.) The only
problem with this suggestion is that we do not observe v2; it is the error in the reduced form
equation for y2. Nevertheless, we can write v2  y2 − z2 and, because we collect data on y2

and z, we can consistently estimate 2 by OLS. Therefore, we can replace v2 with v̂2, the OLS
residuals from the first-stage regression of y2 on z. Simple substitution gives

y1  z11  1y2  1v̂2  error,     (1.7)

where, for each i, errori  ei1  1zi̂2 − 2, which depends on the sampling error in ̂2

unless 1  0. Standard results on two-step estimation imply the OLS estimators from (1.7)
will be consistent for 1,1, and 1.

The OLS estimates from (1.7) are control function estimates. The inclusion of the residuals
v̂2 “controls” for the endogeneity of y2 in the original equation (although it does so with
sampling error because ̂2 ≠ 2).

It is a simple exercise in the algebra of least squares to show that the OLS estimates of 1

and 1 from (1.7) are identical to the 2SLS estimates starting from (1.1) and using z as the
vector of instruments. (Standard errors from (1.7) must adjust for the generated regressor.)

It is trivial to use (1.7) to test H0 : 1  0, as the usual t statistic is asymptotically valid
under homoskedasticity Varu1|z,y2  1

2 under H0; or use the heteroskedasticity-robust
version (which does not account for the first-stage estimation of 2).

Now extend the model:
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y1  z11  1y2  1y2
2  u1

Eu1|z  0.
    (1.8)
    (1.9)

For simplicity, assume that we have a scalar, z2, that is not also in z1. Then, under (1.9) –
which is stronger than (1.2), and is essentially needed to identify nonlinear models – we can
use, say, z2

2 (if z2 is not binary) as an instrument for y2
2 because any function of z2 is

uncorrelated with u1. In other words, we can apply the standard IV estimator with explanatory
variables z1,y2,y2

2 and instruments z1, z2, z2
2; note that we have two endogenous

explanatory variables, y2 and y2
2.

What would the CF approach entail in this case? To implement the CF approach in (1.8),
we obtain the conditional expectation Ey1|z,y2 – a linear projection argument no longer
works because of the nonlinearity – and that requires an assumption about Eu1|z,y2. A
standard assumption is

Eu1|z,y2  Eu1|z,v2  Eu1|v2  1v2,     (1.10)

where the first equality follows because y2 and v2 are one-to-one functions of each other
(given z) and the second would hold if u1,v2 is independent of z – a nontrivial restriction on
the reduced form error in (1.3), not to mention the structural error u1.. The final assumption is
linearity of the conditional expectation Eu1|v2, which is more restrictive than simply defining
a linear projection. Under (1.10),

Ey1|z,y2  z11  1y2  1y2
2  1y2 − z2

 z11  1y2  1y2
2  1v2.

    (1.11)

Implementing the CF approach means running the OLS regression y1 on z1,y2,y2
2, v̂2,where v̂2

still represents the reduced form residuals. The CF estimates are not the same as the 2SLS
estimates using any choice of instruments for y2,y2

2.
The CF approach, while likely more efficient than a direct IV approach, is less robust. For

example, it is easily seen that (1.9) and (1.10) imply that Ey2|z  z2. A linear conditional

expectation for y2 is a substantive restriction on the conditional distribution of y2. Therefore,
the CF estimator will be inconsistent in cases where the 2SLS estimator will be consistent. On
the other hand, because the CF estimator solves the endogeneity of y2 and y2

2 by adding the
scalar v̂2 to the regression, it will generally be more precise – perhaps much more precise –
than the IV estimator. (I do not know of a systematic analysis comparing the two approaches in
models such as (1.8).)
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Standard CF approaches impose extra assumptions even in the simple model (1.1) if we
allow y2 to have discreteness in its distribution. For example, suppose y2 is a binary response.
Then the CF approach involves estimating

Ey1|z,y2  z11  1y2  Eu1|z,y2,

and so we must be able to estimate Eu1|z,y2. If y2  1z2  e2 ≥ 0, u1,e2 is independent
of z, Eu1|e2  1e2, and e2 ~Normal0,1, then

Eu1|z,y2  EEu1|z,e2|z,y2  1Ev2|z,y2

 1y2z2 − 1 − y2−z2,

where   / is the inverse Mills ratio (IMR). A simple two-step estimator is to

obtain the probit estimator ̂2 and then to add the “generalized residual,”

gri2 ≡ yi2zi̂2 − 1 − yi2−zi̂2 as a regressor:

yi1 on zi1, yi2, gri2, i  1, . . . ,N.

Consistency of the CF estimators hinges on the model for Dy2|z being correctly specified,
along with linearity in Eu1|v2 (and some sort of independence with z). Of course, if we just
apply 2SLS directly to (1.1), it makes no distinction among discrete, continuous, or some
mixture for y2. 2SLS is consistent if Ly2|z  z2 actually depends on z2 and (1.2) holds. So,
while estimating (1.1) using CF methods when y2 is binary is somewhat popular (Stata’s
“treatreg” even has the option of full MLE, where u1,e2 is bivariate normal), one should
remember that it is less robust than standard IV approaches.

How might one use the binary nature of y2 in IV estimation? Assume Eu1|z  0 and,

nominally, assume a probit model for Dy2|z. Obtain the fitted probabilities, zi̂2, from the
first stage probit, and then use these as IVs for yi2. This method is fully robust to
misspecification of the probit model; the standard errors need not be adjusted for the first-stage
probit (asymptotically); and it is the efficient IV estimator if Py2  1|z  z2 and
Varu1|z  1

2. But it is probably less efficient than the CF estimator if the additional

assumptions needed for CF consistency hold. (Note: Using zi̂2 as an IV for yi2 is not the

same as using zi̂2 as a regressor in place of yi2.)
To summarize: except in the case where y2 appears linearly and a linear reduced form is

estimated for y2, the CF approach imposes extra assumptions not imposed by IV approaches.
However, in more complicated models, it is hard to beat the CF approach.
2. Correlated Random Coefficient Models
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Control function methods can be used for random coefficient models – that is, models
where unobserved heterogeneity interacts with endogenous explanatory variables. However, in
some cases, standard IV methods are more robust. To illustrate, we modify equation (1.1) as

y1  1  z11  a1y2  u1,     (2.1)

where z1 is 1  L1, y2 is the endogenous explanatory variable, and a1, the “coefficient” on y2 –
an unobserved random variable. [It is now convenient to set apart the intercept.] We could
replace 1 with a random vector, say d1, and this would not affect our analysis of the IV
estimator (but would slightly alter the control function estimator). Following Heckman and
Vytlacil (1998), we refer to (2.1) as a correlated random coefficient (CRC) model.

It is convenient to write a1  1  v1 where 1  Ea1 is the object of interest. We can
rewrite the equation as

y1  1  z11  1y2  v1y2  u1 ≡ 1  z11  1y2  e1,     (2.2)

where e1  v1y2  u1. Equation (2.2) shows explicitly a constant coefficient on y2 (which we
hope to estimate) but also an interaction between the observed heterogeneity, v1, and y2.
Remember, (2.2) is a population model. For a random draw, we would write
yi1  1  zi11  1yi2  vi1yi2  ui1, which makes it clear that 1 and 1 are parameters to
estimate and vi1 is specific to observation i.

As discussed in Wooldridge (1997, 2003), the potential problem with applying instrumental
variables (2SLS) to (2.2) is that the error term v1y2  u1 is not necessarily uncorrelated with
the instruments z, even if we make the assumptions

Eu1|z Ev1|z  0,     (2.3)

which we maintain from here on. Generally, the term v1y2 can cause problems for IV
estimation, but it is important to be clear about the nature of the problem. If we are allowing y2

to be correlated with u1 then we also want to allow y2 and v1 to be correlated. In other words,
Ev1y2  Covv1,y2 ≡ 1 ≠ 0. But a nonzero unconditional covariance is not a problem
with applying IV to (2.2): it simply implies that the composite error term, e1, has
(unconditional) mean 1 rather than a zero. As we know, a nonzero mean for e1 means that the
orginal intercept, 1, would be inconsistenly estimated, but this is rarely a concern.

Therefore, we can allow Covv1,y2, the unconditional covariance, to be unrestricted. But
the usual IV estimator is generally inconsistent if Ev1y2|z depends on z. (There are still cases,
which we will cover in Part IV, where the IV estimator is consistent.). Note that, because
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Ev1|z  0, Ev1y2|z  Covv1,y2|z. Therefore, as shown in Wooldridge (2003), a
sufficient condition for the IV estimator applied to (2.2) to be consistent for 1 and 1 is

Covv1,y2|z  Covv1,y2.     (2.4)

The 2SLS intercept estimator is consistent for 1  1. Condition (2.4) means that the
conditional covariance between v1 and y2 is not a function of z, but the unconditional
covariance is unrestricted.

Because v1 is unobserved, we cannot generally verify (2.4). But it is easy to find situations
where it holds. For example, if we write

y2  m2z  v2     (2.5)

and assume v1,v2 is independent of z (with zero mean), then (2.4) is easily seen to hold
because Covv1,y2|z Covv1,v2|z, and the latter cannot be a function of z under
independence. Of course, assuming v2 in (2.5) is independent of z is a strong assumption even
if we do not need to specify the mean function, m2z. It is much stronger than just writing
down a linear projection of y2 on z (which is no real assumption at all). As we will see in
various models in Part IV, the representation (2.5) with v2 independent of z is not suitable for
discrete y2, and generally (2.4) is not a good assumption when y2 has discrete characteristics.
Further, as discussed in Card (2001), (2.4) can be violated even if y2 is (roughly) continuous.
Wooldridge (2005a) makes some headway in relaxing (2.44) by allowing for parametric
heteroskedasticity in u1 and v2.

A useful extension of (1.1) is to allow observed exogenous variables to interact with y2.
The most convenient formulation is

y1  1  z11  1y2  z1 − 1y21  v1y2  u1     (2.6)

where 1 ≡ Ez1 is the 1  L1 vector of population means of the exogenous variables and 1

is an L1  1 parameter vector. As we saw in Chapter 4, subtracting the mean from z1 before
forming the interaction with y2 ensures that 1 is the average partial effect.

Estimation of (2.6) is simple if we maintain (2.4) [along with (2.3) and the appropriate rank
condition]. Typically, we would replace the unknown 1 with the sample averages, z̄1, and

then estimate

yi1  1  zi11  1yi2  zi1 − z̄1yi21  errori     (2.7)

by instrumental variables, ignoring the estimation error in the population mean. The only issue
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is choice of instruments, which is complicated by the interaction term. One possibility is to use
interactions between zi1 and all elements of zi (including zi1). This results in many
overidentifying restrictions, even if we just have one instrument zi2 for yi2. Alternatively, we
could obtain fitted values from a first stage linear regression yi2 on zi, ŷ i2  zi̂2, and then use
IVs 1,zi, zi1 − z̄1ŷ i2, which results in as many overidentifying restrictions as for the model
without the interaction. Importantly, the use of zi1 − z̄1ŷ i2 as IVs for zi1 − z̄1yi2 is
asymptotically the same as using instruments zi1 − 1  zi2, where Ly2|z  z2 is the

linear projection. In other words, consistency of this IV procedure does not in any way restrict
the nature of the distribution of y2 given z. Plus, although we have generated instruments, the
assumptions sufficient for ignoring estimation of the instruments hold, and so inference is
standard (perhaps made robust to heteroskedasticity, as usual).

We can just identify the parameters in (2.6) by using a further restricted set of instruments,
1,zi1,ŷ i2, zi1 − z̄1ŷ i2. If so, it is important to use these as instruments and not as regressors.
If we add the assumption. The latter procedure essentially requires a new assumption:

Ey2|z  z2     (2.8)

(where z includes a constant). Under (2.3), (2.4), and (2.8), it is easy to show

Ey1|z  1  1  z11  1z2  z1 − 1  z21,     (2.9)

which is the basis for the Heckman and Vytlacil (1998) plug-in estimator. The usual IV
approach simply relaxes (2.8) and does not require adjustments to the standard errors (because
it uses generated instruments, not generated regressors).

We can also use a control function approach if we assume

Eu1|z,v2  1v2,Ev1|z,v2  1v2.     (2.10)

Then

Ey1|z,y2  1  z11  1y2  1v2y2  1v2,     (2.11)

and this equation is estimable once we estimate 2. Garen’s (1984) control function procedure
is to first regress y2 on z and obtain the reduced form residuals, v̂2, and then to run the OLS
regression y1 on 1,z1,y2, v̂2y2, v̂2. Under the maintained assumptions, Garen’s method
consistently estimates 1 and 1. Because the second step uses generated regressors, the
standard errors should be adjusted for the estimation of 2 in the first stage. Nevertheless, a
test that y2 is exogenous is easily obtained from the usual F test of H0 : 1  0,1  0 (or a
heteroskedasticity-robust version). Under the null, no adjustment is needed for the generated
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standard errors.
Garen’s assumptions are more restrictive than those needed for the standard IV estimator to

be consistent. For one, it would be a fluke if (2.10) held without the conditional covariance
Covv1,y2|z being independent of z. Plus, like HV (1998), Garen relies on a linear model for
Ey2|z. Further, Garen adds the assumptions that Eu1|v2 and Ev1|v2 are linear functions,
something not needed by the IV approach.

Of course, one can make Garen’s approach less parametric by replacing the linear functions
in (2.10) with unknown functions. But independence of u1,v1,v2 and z – or something very
close to independence – is needed. And this assumption is not needed for the usual IV
estimator,

If the assumptions needed for Garen’s CF estimator to be consistent hold, it is likely more
efficient than the IV estimator, although a comparison of the correct asymptotic variances is
complicated. Again, there is a tradeoff between efficiency and robustness.

In the case of binary y2, we have what is often called the “switching regression” model.
Now, the right hand side of equation (2.11) represents Ey1|z,v2 where y2  1z2  v2 ≥ 0.
If we assume (2.10) and that v2|z is Normal0,1, then

Ey1|z,y2  1  z11  1y2  1h2y2,z2  1h2y2,z2y2,

where

h2y2,z2  y2z2 − 1 − y2−z2

is the generalized residual function. The two-step estimation method is the one due to
Heckman (1976).

There are two ways to embellish the model. The first is common: interact z1 − 1 with y2

to allow different slopes for the “treated” and non-treated groups (keeping 1 as the average
treatment effect). This is common, and then the CF regression

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zi̂2, h2yi2,zi̂2yi2

is identical to running two separate regressions, including the IMRs for y2  0 and y2  1. The
estimate of 1 is then the difference in the two intercepts.

An extension that is not so common – in fact, it seems not to appear in the literature –
comes from allowing z1 to also interact with heterogeneity, as in

y1  z1d1  a1y2  y2z1 − 1g1  u1.

Now all coefficients are heterogeneous. If we assume that Ea1|v2, Ed1|v2, and Eg1|v2 are
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linear in v2, then

Ey1|z,y2  z11  1y2  y2z1 − 11  1Ev2|z,y2  1Ev2|z,y2y2

 z1Ev2|z,y21  y2z1 − 1Ev2|z,y21

 z11  1y2  1h2y2,z2  1h2y2,z2y2

 h2y2,z2z11  h2y2,z2y2z1 − 11

and the second-step estimation after the first stage probit is a regression

yi1 on 1, zi11  1yi2  zi1 − z̄1yi2, h2yi2,zi̂2, h2yi2,zi̂2yi2,
h2yi2,zi̂2zi1, h2yi2,zi̂2yi2zi1 − z̄1.

across all observations i. It is easy use bootstrapping to obtain valid standard errors because the
first-stage estimation is just a probit and the second stage is just linear regression.

If not for the term v1y2, we could, in a much more robust manner, use an IV procedure
(where the standard errors are easier to obtain, too). The IVs would be
1,zi1, ̂i2, zi1 − z̄1  ̂i2, and the same procedure consistently estimates the average effects
whether or not there are random coefficients on zi1.

Interesting, the addition of the terms h2yi2,zi̂2zi1 and h2yi2,zi̂2yi2zi1 − z̄1 has
similarities with methods that allow Ev1|v2 and so on to be more flexible. For example, as
shown in Heckman and MaCurdy (1986), if Eu1|v2  1v2  1v2

2 − 1, then the extra term

for y2  1 is −zi̂2zi̂2 and there is a similar expression for yi2  0.
Newey (1988), in the standard switching regression framework, proposed a flexible

two-step procedure that estimates 2 semiparametrically in the first stage – see Powell (1994)

for a survey of such methods – and then uses series in zi̂2 in place of the usual IMR terms. He
obtains valid standard errors and, in most cases, bootstrapping is valid, too.
3. Some Common Nonlinear Models and Limitations of the CF
Approach

Like standard IV methods, control function approaches are more difficult to apply to
nonlinear models, even relatively simple ones. Methods are available when the endogenous
explanatory variables are continuous, but few if any results apply to cases with discrete y2.
3.1. Binary and Fractional Responses

The probit model provides a good illustration of the general approach. With a single
endogenous explanatory variable, the simplest specification is

y1  1z11  1y2  u1 ≥ 0,     (3.1)

9
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where u1|z ~Normal0,1. But the analysis goes through if we replace z1,y2 with any known
function g1z1,y2, provided we have sufficient identifying assumptions. An example is
y1  z11  y2z11  1y2

2  u1  0. The nonlinearity in y2 is not itself a problem (unless we
inappropriately try to mimic 2SLS – more on this later).

The Blundell-Smith (1986) and Rivers-Vuong (1988) approach is to make a
homoskedastic-normal assumption on the reduced form for y2,

y2  z2  v2, v2|z ~Normal0,2
2.     (3.2)

A key point is that the RV approach essentially requires

u1,v2 independent of z;     (3.3)

as we will see in the next section, semiparametric and nonparametric CF methods also rely on
(3.3), or at least something close to it..

If we assume

u1,v2 ~Bivariate Normal     (3.4)

with 1  Corru1,v2, then we can proceed with MLE based on fy1,y2|z. A simpler
two-step approach, which is convenient for testing H0 : 1  0 (y2 is exogenous) is also
available, and works if we replace the normality assumption in (3.2), the independence
assumption in (3.3), and joint normality in (3.4) with

Du1|v2,z  Normal1v2, 1 − 1
2,     (3.5)

where 1  1/2 is the regression coefficient. That we can relax the assumptions to some
degree using a two-step CF approach has implications for less parametric approaches.
Certainly we can relax the homoskedasticity and linear expectation in (3.3) without much
additional work, as discussed in Wooldridge (2005a).

Under the weaker assumption (3.5) we can write

Py1  1|z,y2  z11  1y2  1v2     (3.6)

where each coefficient is multiplied by 1 − 1
2−1/2.

The RV two-step approach is
(i) OLS of y2 on z, to obtain the residuals, v̂2.
(ii) Probit of y1 on z1,y2, v̂2 to estimate the scaled coefficients.

The original coefficients, which appear in the partial effects, are easily obtained from the
set of two-step estimates:

10
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̂1  ̂1/1  ̂1
2 ̂2

21/2,     (3.7)

where ̂1 is the coeffcient on v̂2 and ̂2
2 is the usual error variance estimator from the first step

OLS, and ̂1 includes ̂1 and ̂1. Standard errors can be obtained from the delta method of

bootstrapping. Of course, they are computed directly from MLE. Partial effects are based on

x1̂1 where x1  z1,y2. Hopefully it is clear that nothing changes if x1  g1z1,y2

expect how one computes the partial effects.
A simple t test on v̂2 is valid to test H0 : 1  0.
A different way to obtain partial effects is to use the average structural function approach,

which leads to Ev2x11. Notice this holds under (3.5) without joint normality. A

consistent, N -asymptotically normal estimator is

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2,     (3.8)

that is, we average out the reduced form residuals, v̂i2. This formulation is useful for more
complicated models.

Given that the probit structural model is essentially arbitrary, one might be so bold as to
specify models for Py1  1|z1,y2,v2 directly. For example, we can add polynomials in v2 or
even interact v2 with elements of x1 side a probit or logit function. We return to this in the next
section.

The two-step CF approach easily extends to fractional responses. Now, we start with an
omitted variables formulation in the conditional mean:

Ey1|z,y2,q1  Ey1|z1,y2,q1  x11  q1,     (3.9)

where x1 is a function of z1,y2 and q1 contains unobservables. As usual, we need some
exclusion restrictions, embodied by omitting z2 from x1. The specification in equation (3.9)
allows for responses at the corners, zero and one, and y1 may take on any values in between.
Under the assumption that

Dq1|v2,z ~ Normal1v2,1
2     (3.10)

Given (3.9) and (3.10), it can be shown, using the mixing property of the normal distribution,
that

Ey1|z,y2,v2  x11  1v2,     (3.11)

11
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where the index “” denotes coefficients multiplied by 1  1
2−1/2. Because the Bernoulli log

likelihood is in the linear exponential family, maximizing it consistently estimates the
parameters of a correctly specified mean; naturally, the same is true for two-step estimation.
That is, the same two-step method can be used in the binary and fractional cases. Of course,
the variance associated with the Bernoulli distribution is generally incorrect. In addition to
correcting for the first-stage estimates, a robust sandwich estimator should be computed to
account for the fact that Dy1|z,y2 is not Bernoulli. The best way to compute partial effects is
to use (3.8), with the slight notational change that the implicit scaling in the coefficients is
different. By using (3.8), we can directly use the scaled coefficients estimated in the second
stage – a feature common across CF methods for nonlinear models. The bootstrap that
reestimates the first and second stages for each iteration is an easy way to obtain standard
errors. Of course, having estimates of the parameters up to a common scale allows us to
determine signs of the partial effects in (3.9) as well as relative partial effects on the
continuous explanatory variables.

Wooldridge (2005) describes some simple ways to make the analysis starting from (3.9)
more flexible, including allowing Varq1|v2 to be heteroskedastic. We can also use strictly
monotonic transformations of y2 in the reduced form, say h2y2, regardless of how y2 appears
in the structural model: the key is that y2 can be written as a function of z,v2. The extension
to multivariate y2 is straightforward with sufficient instruments provide the elements of y2, or
strictly monotonic functions of them, have reduced forms with additive errors that are
effectively indendent of z. (This assumption rules out applications to y2 that are discrete
(binary, multinomial, or count)or have a discrete component (corner solution).

The control function approach has some decided advantages over another two-step
approach – one that appears to mimic the 2SLS estimation of the linear model. Rather than
conditioning on v2 along with z (and therefore y2) to obtain
Py1  1|z,v2  Py1  1|z,y2,v2, we can obtain Py1  1|z. To find the latter probability,
we plug in the reduced form for y2 to get y1  1z11  1z2  1v2  u1  0. Because
1v2  u1 is independent of z and u1,v2 has a bivariate normal distribution,
Py1  1|z  z11  1z2/1 where
1

2 ≡ Var1v2  u1  1
22

2  1  21Covv2,u1. (A two-step procedure now proceeds by

using the same first-step OLS regression – in this case, to get the fitted values, ŷ i2  zi̂2 –
now followed by a probit of yi1 on zi1,ŷ i2. It is easily seen that this method estimates the
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coefficients up to the common scale factor 1/1, which can be any positive value (unlike in the
CF case, where we know the scale factor is greater than unity).

One danger with plugging in fitted values for y2 is that one might be tempted to plug ŷ2

into nonlinear functions, say y2
2 or y2z1. This does not result in consistent estimation of the

scaled parameters or the partial effects. If we believe y2 has a linear RF with additive normal
error independent of z, the addition of v̂2 solves the endogeneity problem regardless of how y2

appears. Plugging in fitted values for y2 only works in the case where the model is linear in y2.
Plus, the CF approach makes it much easier to test the null that for endogeneity of y2 as well as
compute APEs.

In standard index models such as (3.9), or, if you prefer, (3.1), the use of control functions
to estimate the (scaled) parameters and the APEs produces no surprises. However, one must
take care when, say, we allow for random slopes in nonlinear models. For example, suppose
we propose a random coefficient model

Ey1|z,y2,c1  Ey1|z1,y2,c1  z11  a1y2  q1,     (3.12)

where a1 is random with mean 1 and q1 again has mean of zero. If we want the partial effect
of y2, evaluated at the mean of heterogeneity, we have

1z11  1y2,     (3.13)

where  is the standard normal pdf, and this equation is obtained by differentiating (3.12)
with respect to y2 and then plugging in a1  1 and q1  0. Suppose we write a1  1  d1

and assume that d1,q1 is bivariate normal with mean zero. Then, for given z1,y2, the
average structural function can be shown to be

Ed1,q1z11  1y2  d1y2  q1  z11  1y2/q2  2dqy2  d2y2
21/2,     (3.14)

where q2  Varq1, d2  Vard1, and dq  Covd1,q1. The average partial effect with

respect to, say, y2, is the derivative of this function with respect to y2. While this partial effect
depends on 1, it is messier than (3.13) and need not even have the same sign as 1.
Wooldridge (2005) discusses related issues in the context of probit models with exogenous
variables and heteroskedasticity. In one example, he shows that, depending on whether
heteroskedasticity in the probit is due to heteroskedasticity in Varu1|x1, where u1 is the latent
error, or random slopes, the APEs are completely different in general. The same is true here:
the APE when the coefficient on y2 is random is generally very different from the APE
obtained if we maintain a1  1 but Varq1|v2 is heteroskedastic. In the latter case, the APE
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is a positive multiple of 1.
Incidentally, we can estimate the APE in (3.14) fairly generally. A parametric approach is

to assume joint normality of d1,q1,v2 (and independence with z). Then, with a normalization
restriction, it can be shown that

Ey1|z,v2  z11  1y2  1v2  1y2v2/1  1y2  1y2
21/2,     (3.15)

which can be estimated by inserting v̂2 for v2 and using nonlinear least squares or Bernoulli
QMLE. (The latter is often called “heteroskedastic probit” when y1 is binary.) This procedure
can be viewed as an extension to Garen’s method for linear models with correlated random
coefficients.

Estimation, inference, and interpretation would be especially straightforward (the latter
possibly using the bootstrap) if we squint and pretend the term 1  1y2  1y2

21/2 is not
present. Then, estimation would simply be Bernoulli QMLE of yi1 on zi1, yi2, v̂i2, and yi2v̂i2,
which means that we just add the interaction to the usual Rivers-Vuong procedure. The APE
for y2 would be estimated by taking the derivative with respect to y2 and averaging out v̂i2, as
usual:

N−1∑
i1

N

̂1  ̂1v̂i2  z1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2,     (3.16)

and evaluating this at chosen values for z1,y2 (or using further averaging across the sample
values). This simplification cannot be reconciled with (3.9), but it is in the spirit of adding
flexibility to a standard approach and treating functional forms as approximations. As a
practical matter, we can compare this with the APEs obtained from the standard Rivers-Vuong
approach, and a simple test of the null hypothesis that the coefficient on y2 is constant is
H0 : 1  0 (which should account for the first step estimation of ̂2). The null hypothesis
that y2 is exogenous is the joint test H0 : 1  0,1  0, and in this case no adjustment is
needed for the first-stage estimation. And why stop here? If we, add, say, y2

2 to the structural
model, we might add v̂2

2 to the estimating equation as well. It would be very difficult to relate
parameters estimated from the CF method to parameters in an underlying structural model;
indeed, it would be difficult to find a structural model given rise to this particular CF approach.
But if the object of interest are the average partial effects, the focus on flexible models for
Ey1|z1,y2,v2 can be liberating (or disturbing, depending on one’s point of view about
“structural” parameters).
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Lewbel (2000) has made some progress in estimating parameters up to scale in the model
y1  1z11  1y2  u1  0, where y2 might be correlated with u1 and z1 is a 1  L1 vector
of exogenous variables. Lewbel’s (2000) general approach applies to this situation as well. Let
z be the vector of all exogenous variables uncorrelated with u1. Then Lewbel requires a
continuous element of z1 with nonzero coefficient – say the last element, zL1– that does not
appear in Du1|y2,z. (Clearly, y2 cannot play the role of the variable excluded from
Du1|y2,z if y2 is thought to be endogenous.) When might Lewbel’s exclusion restriction
hold? Sufficient is y2  g2z2  v2, where u1,v2 is independent of z and z2 does not contain
zL1 . But this means that we have imposed an exclusion restriction on the reduced form of y2,
something usually discouraged in parametric contexts. Randomization of zL1 does not make its
exclusion from the reduced form of y2 legitimate; in fact, one often hopes that an instrument
for y2 is effectively randomized, which means that zL1 does not appear in the structural
equation but does appear in the reduced form of y2 – the opposite of Lewbel’s assumption.
Lewbel’s assumption on the “special” regressor is suited to cases where a quantity that only
affects the response is randomized. A randomly generated project cost presented to
interviewees in a willingness-to-pay study is one possibility.

Returning to the probit response function in (3.9), we can understand the limits of the CF
approach for estimating nonlinear models with discreted EEVs. The Rivers-Vuong approach,
and its extension to fractional responses, cannot be expected to produce consistent estimates of
the parameters or APEs for discrete y2. The problem is that we cannot write

y2  z2  v2

Dv2|z  Dv2  Normal0,2
2.     (3.17)

In other words, unlike when we estimate a linear structural equation, the reduced form in the
RV approach is not just a linear projection – far from it. In the extreme we have completely
specified Dy2|z as homoskedastic normal, which is clearly violated if y2 is a binary or count
variable, or a corner solution (commonly called a “censored” variable). Unfortunately, even
just assuming independence between v2 and z rules out discrete y2, an assumption that plays an
important role even in fully nonparametric approaches. The bottom line is that there are no
known two-step estimation methods that allow one to estimate a probit model or fractional
probit model with discrete y2, even if we make strong distributional assumptions. And, there
are some poor strategies that still linger. For example, suppose y1 and y2 are both binary, (3.1)
holds, and
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y2  1z2  v2 ≥ 0     (3.18)

and we maintain joint normality of u1,v2 – now both with unit variances – and, of course,
independence between the errors and z. Because Dy2|z follows a standard probit, it is
tempting to try to mimic 2SLS as follows: (i) Do probit of y2 on z and get the fitted

probabilities, ̂2  z̂2. (ii) Do probit of y1 on z1, ̂2, that is, just replace y2 with ̂2. This
does not work, as it requires believing that the expected value passes through nonlinear
functions. Some have called prodedures like this a “forbidden regression.” We could find
Ey1|z,y2 as a function of the structural and reduced form parameters, insert the first-stage
estimates of the RF parameters, and then use binary response estimation in the second stage.
But the estimator is not probit with the fitted probabilities plugged in for y2.Currently, the only
strategy we have is maximum likelihood estimation based on fy1|y2,zfy2|z. (The lack of
options that allow some robustness to distributional assumptions on y2 helps explain why some
authors, notably Angrist (2001), have promoted the notion of just using linear probability
models estimated by 2SLS. This strategy seems to provide good estimates of the average
treatment effect in many applications.)

An issue that comes up occasionally is whether “bivariate” probit software be used to
estimate the probit model with a binary endogenous variable. In fact, the answer is yes, and the
endogenous variables can appear in any way in the model, particularly interacted with
exogenous variables. The key is that the likelihood function is constructed from
fy1|y2,x1f2y2|x2, and so its form does not change if x1 includes y2. (Of course, one should
have at least one exclusion restriction in the case x1 does depend on y2. ) MLE, of course, has
all of its desirable properties, and the parameter estimates needed to compute APEs are
provided directly.

If y1 is a fractional response satisfying (3.9), y2 follows (3.18), and q1,v2 are jointly
normal and independent of z, a two-step method based on Ey1|z,y2 is possible; the
expectation is not in closed form, and estimation cannot proceed by simply adding a control
function to a Bernoulli QMLE. But it should not be difficult to implement. Full MLE for a
fractional response is more difficult than for a binary response, particularly if y1 takes on
values at the endpoints with positive probability.

An essentially parallel discussion holds for ordered probit response models, where y1 takes
on the ordered values 0,1, . . . ,J. The RV procedure, and its extensions, applies immediately.
In computing partial effects on the response probabilities, we simply average out the reduced
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for residuals, as in equation (3.8). The comments about the forbidden regression are
immediately applicable, too: one cannot simply insert, say, fitted probabilities for the binary
EEV y2 into an ordered probit model for y1 and hope for consistent estimates of anything of
interest.

Likewise, methods for Tobit models when y1 is a corner solution, such as labor supply or
charitable contributions, are analyzed in a similar fashion. If y2 is a continuous variable, CF
methods for consistent estimation can be obtained, at least under the assumptions used in the
RV setup. Blundell and Smith (1986) and Wooldridge (2002, Chapter 16) contain treatments.
The embellishments described above, such as letting Du1|v2 be a flexible normal distribution,
carry over immediately to Tobit case, as do the cautions in looking for simple two-step
methods when Dy2|z is discrete.
3.2.Multinomial Responses

Allowing endogenous explanatory variables (EEVs) in multinomial response models is
notoriously difficult, even for continuous endogenous variables. There are two basic reasons.
First, multinomial probit (MNP), which mixes well well a reduced form normality assumption
for Dy2|z, is still computationally difficult for even a moderate number of choices.
Apparently, no one has undertaken a systematic treatment of MNP with EEVs, including how
to obtain partial effects.

The multinomial logit (MNL), and its extensions, such as nested logit, is much simpler
computationally with lots of alternatives. Unfortunately, the normal distribution does not mix
well with the extreme value distribution, and so, if we begin with a structural MNL model (or
conditional logit), the estimating equations obtained from a CF approach are difficult to obtain,
and MLE is very difficult, too, even if we assume a normal distribution in the reduced form(s).

Recently, some authors have suggested taking a practical approach to allowing at least
continuous EEVs in multinomial response. The suggestions for binary and fractional responses
in the previous subsection – namely, use probit, or even logit, with flexible functions of both
the observed variables and the reduced form residuals – is in this spirit.

Again it is convenient to model the source of endogeneity as an omitted variable. Let y1 be
the (unordered) multinomial response taking values 0,1, . . . ,J, let z be the vector of
endogenous variables, and let y2 be a vector of endogenous variables. If r1 represents omitted
factors that the researcher would like to control for, then the structural model consists of
specifications for the response probabilities
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Py1  j|z1,y2, r1, j  0,1, . . . ,J.     (3.20)

The average partial effects, as usual, are obtained by averaging out the unobserved
heterogeneity, r1. Assume that y2 follows the linear reduced form

y2  z2  v2.     (3.21)

Typically, at least as a first attempt, we would assume a convenient joint distribution for
r1,v2, such as multivariate normal and independent of z. This approach has been applied
when the response probabilities, conditional on r1, have the conditional logit form. For
example, Villas-Boas and Winer (1999) apply this approach to modeling brand choice, where
prices are allowed to correlated with unobserved tastes that affect brand choice. In
implementing the CF approach, the problem in starting with a multinomial or conditional logit
model for (3.zz) is computational. Nevertheless, estimation is possible, particular if one uses
simulation methods of estimation briefly mentioned in the previous subsection.

A much simpler control function approach is obtained if we skip the step of modeling
Py1  j|z1,y2, r1 and jump directly to convenient models for

Py1  j|zi1,y2,v2  Py1  j|z,y2. Villas-Boas (2005) and Petrin and Train (2006) are

proponents of this solution. The idea is that any parametric model for Py1  j|z1,y2, r1 is

essentially arbitrary, so, if we can recover quantities of interest directly from
Py1  j|z1,y2,v2, why not specify these probabilities directly? If we assume that

Dr1|z,y2  Dr1|v2, and that Py1  j|z1,y2,v2 can be obtained from Py1  j|z1,y2, r1 by

integrating the latter with respect to Dr1|v2 then we can estimate the APEs directly from
Py1  j|z1,y2,v2 be averaging out across the reduced form residuals, as in previous cases.

Once we have selected a model for Py1  j|z1,y2,v2, which could be multinomial logit,

conditional logit, or nested logit, we can apply a simple two-step procedure. First, estimate the

reduced form for yi2 and obtain the residuals, v̂i2  yi2 − zi̂2. (Alternatively, we can use

strictly monotonic transformations of the elements of yi2.) Then, we estimate a multinomial

response model with explanatory variables zi1,yi2, and v̂i2. As always with control function

approaches, we need enough exclusion restrictions in zi1 to identify the parameters and APEs.
We can include nonlinear functions of zi1,yi2, v̂i2, including quadratics and interactions for

more flexibility.
Given estimates of the probabilities pjz1,y2,v2, we can estimate the average partial

effects on the structural probabilities by estimating the average structural function:
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ASFz1,y2  N−1∑
i1

N

pjz1,y2, v̂i2.     (3.22)

Then, we can take derivatives or changes of ASFz1,y2 with respect to elements of z1,y2,

as usual. While the delta method can be used to obtain analytical standard errors, the bootstrap
is simpler and feasible if one uses, say, conditional logit.

In an application to choice of television service, Petrin and Train (2006) find the CF
approach gives remarkably similar parameter estimates to the approach proposed by Berry,
Pakes, and Levinsohn (1995), which we touch on in the cluster sample notes.
3.3. Exponential Models

Exponential models represent a middle ground between linear models and discrete
response models: to allow for EEVs in an exponential model, we need to impose more
assumptions than needed for standard linear models but fewer assumptions than discrete
response models. Both IV approaches and CF approaches are available for exponential models,
the latter having been worked out for continuous and binary EEVs. With a single EEV, write

Ey1|z,y2, r1  expz11  1y2  r1,     (3.23)

where r1 is the omitted variable. (Extensions to general nonlinear functions of z1,y2 are
immediate; we just add those functions with linear coefficients to (3.23). Leading cases are
polynomials and interactions.) Suppose first that y2 has a standard linear reduced form with an
additive, independent error:

y2  z2  v2

Dr1,v2|z  Dr1,v2,
    (3.24)
    (3.25)

so that r1,v2 is independent of z. Then

Ey1|z,y2  Ey1|z,v2  Eexpr1|v2expz11  1y2.     (3.26)

If r1,v2 are jointly normal, then Eexpr1|v2  exp1v2, where we set the intercept to
zero, assuming z1 includes an intercept. This assumption can hold more generally, too. Then

Ey1|z,y2  Ey1|z,v2  expz11  1y2  1v2,     (3.27)

and this expectation immediately suggest a two-step estimation procedure. The first step, as
before, is to estimate the reduced form for y2 and obtain the residuals. Then, include v̂2, along
with z1 and y2, in nonlinear regression or, especially if y1 is a count variable, in a Poisson
QMLE analysis. Like NLS, it requires only (3.27) to hold. A t test of H0 : 1  0 is valid as a
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test that y2 is exogenous. Average partial effects on the mean are obtained from

N−1∑
i1

N

exp̂1v̂i2 expz1̂1  ̂1y2.

Proportionate effects on the expected value, that is elasticities and semi-elasticities, the
expected value do not depend on the scale factor out front.

Like in the binary case, we can use a random coefficient model to suggest more flexible CF
methods. For example, if we start with

Ey1|z,y2,a1, r1  expz11  a1y2  r1

 expz11  1y2  d1y2  r1

    (3.28)

and assume trivariate normality of d1, r1,v2 (and independence from z), then it can be shown
that

Ey1|z,v2  expz11  1y2  1v2  1y2v2

 r2  2dry2  d2y2
2/2.

    (3.29)

Therefore, the estimating equation involves a quadratic in y2 and an interaction between y2 and
v2. Notice that the term r2  2dry2  d2y2

2/2 is present even if y2 is exogenous, that is,
1  1  0. If dr  Covd1, r1 ≠ 0 then (3.29) does not even identify 1  Ea1 (we
would have to use higher-order moments, such as a variance assumption). But (3.29) does
identify the average structural function (and, therefore, APEs). We just absorb r2 into the
intercept, combine the linear terms in y2, and add the quadratic in y2. So, we would estimate

Ey1|z,v2  expz11  1y2  1v2  1y2v2  1y2
2     (3.30)

using a two-step QMLE. The ASF is more complicated, and estimated as

ASFz1,y2  N−1∑
i1

N

expz1̂1  ̂1y2  ̂1v̂i2  ̂1y2v̂i2  ̂1y2
2 ,     (3.31)

which, as in the probit example, implies that the APE with respect to y2 need not have the
same sign as 1.

Our inability to estimate 1 even in this very parametric setting is just one example of how
delicate identification of parameters in standard index models is. Natural extensions to models
with random slopes general cause even the mean heterogeneity (1 above) to be unidentified.
Again, it must be emphasized that the loss of identification holds even if y2 is assumed
exogenous.
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If y2 is a binary model following a probit, then a CF approach due to Terza (1998) can be
used. We return to the model in (3.23) where, for simplicity, we assume y2 is not interacted
with elements of z1; the extension is immediate.We can no longer assume (3.24) and (3.25).
Instead, replace (3.24)

y2  1z2  v2  0     (3.32)

and still adopt (3.25). In fact, we assume r1,v2 is jointly normal. To implement a CF
approach, we need to find

Ey1|z,y2  EEy1|z,v2|z,y2

 expz11  1y2Eexp1  1v2|z,y2

 expz11  1y2hy2,z2,1,     (3.34)

where we absorb 1 into the intercept in z1 without changing notation and

hy2,z2,1  exp1
2/2y21  z2/z2

 1 − y21 − 1  z2/1 − z2,
    (3.35)

as shown by Terza (1998). Now, 2 is estimated by a first-stage probit, and then NLS or, say,
Poisson QMLE can be applied to the mean function

expz11  1y2hy2,z̂2,1.     (3.36)

As usual, unless 1  0, one must account for the estimation error in the first step when
obtaining inference in the second. Terza (1998) contains analytical formulas, or one may use
the bootstrap.

In the exponential case, an alternative to either of the control function approaches just
presented is available – and, it produces consistent estimators regardless of the nature of y2.
Write x1  g1z1,y2 as any function of exogenous and endogenous variables. If we start with

Ey1|z,y2, r1  expx11  r1     (3.37)

then we can use a transformation due to Mullahy (1997) to consistently estimate 1 by method

of moments. By definition, and assuming only that y1 ≥ 0, we can write

y1  expx11  r1a1

 expx11expr1a1, Ea1|z,y2, r1  1.

If r1 is independent of z then

Eexp−x11y1|z  Eexpr1|z  Eexpr1  1,     (3.38)
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where the last equality is just a normalization that defines the intercept in 1. Therefore, we

have conditional moment conditions

Eexp−x11y1 − 1|z  0,     (3.39)

which depends on the unknown parameters 1 and observable data. Any function of z can be

used as instruments in a nonlinear GMM procedure. An important issue in implementing the
procedure is choosing instruments. See Mullahy (1997) for further discussion.
4. Semiparametric and Nonparametric Approaches

Blundell and Powell (2004) show how to relax distributional assumptions on u1,v2 in the
model model y1  1x11  u1  0, where x1 can be any function of z1,y2. The key

assumption is that y2 can be written as y2  g2z  v2, where u1,v2 is independent of z. The
independence of the additive error v2 and z pretty much rules out discreteness in y2, even
though g2 can be left unspecified. Under the independence assumption,

Py1  1|z,v2  Ey1|z,v2  Hx11,v2     (4.1)

for some (generally unknown) function H, . The average structural function is just
ASFz1,y2  Evi2Hx11,vi2. We can estimate H and 1 quite generally by first estimating

the function g2 and then obtaining residuals v̂i2  yi2 − ĝ2zi. Blundell and Powell (2004)
show how to estimate H and 1 (up to scaled) and G, the distribution of u1. The ASF is

obtained from Gx11. We can also estimate the ASF by averaging out the reduced form

residuals,

ASFz1,y2  N−1∑
i1

N

Ĥx1̂1, v̂i2;     (4.2)

derivatives and changes can be computed with respect to elements of z1,y2.
Blundell and Powell (2003) allow Py1  1|z,y2 to have the general form Hz1,y2,v2,

and then the second-step estimation is entirely nonparametric. They also allow ĝ2 to be fully
nonparametric. But parametric approximations in each stage might produce good estimates of
the APEs. For example, yi2 can be regressed on flexible functions of zi to obtain v̂i2. Then, one
can estimate probit or logit models in the second stage that include functions of z1, y2, and v̂2

in a flexible way – for example, with levels, quadratics, interactions, and maybe even
higher-order polynomials of each. Then, one simply averages out v̂i2, as in equation (4.2).
Valid standard errors and test statistics can be obtained by bootstrapping or by using the delta
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method.
In certain cases, an even more parametric approach suggests itself. Suppose we have the

exponential regression

Ey1|z,y2, r1  expx11  r1,     (4.3)

where r1 is the unobservable. If y2  g2z2  v2 and r1,v2 is independent of z, then

Ey1|z1,y2,v2  h2v2expx11,     (4.4)

where now h2 is an unknown function. It can be approximated using series, say, and, of
course, first-stage residuals v̂2 replace v2.

Blundell and Powell (2003) consider a very general setup, which starts with
y1  g1z1,y2,u1, and then discuss estimation of the ASF, given by

ASF1z1,y2   g1z1,y2,u1dF1u1,     (4.5)

where F1 is the distribution of u1. The key restrictions are that y2 can be written as

y2  g2z  v2,     (4.6)

where u1,v2 is independent of z. The additive, independent reduced form errors in (4.6)
effectively rule out applications to discrete y2. Conceptually, Blundell and Powell’s method is
straightforward, as it is a nonparametric extenstion of parametric approaches. First, estimate g2

nonparametrically (which, in fact, may be done via a flexible parametric model, or kernel
estimators). Obtain the residuals v̂i2  yi2 − ĝ2zi. Next, estimate

Ey1|z1,y2,v2  h1z1,y2,v2 using nonparametrics, where v̂i2 replaces v2. Identification of

h1 holds quite generally, provided we have sufficient exclusion restrictions (elements in z not
in z1. BP discuss some potential pitfalls. Once we have ĥ1, we can consistently estimate the
ASF. For given x1

o  z1
o,y2

o, the ASF can always be written, using iterated expectations, as

Ev2Eg1x1
o,u1|v2.

Under the assumption that u1,v2 is independent of z, Eg1x1
o,u1|v2  h1x1

o,v2 – that is,
the regression function of y1 on x1,v2. Therefore, a consistent estimate of the ASF is

N−1∑
i1

N

ĥ1x1, v̂i2.     (4.7)

While semiparametric and parametric methods when y2 (or, more generally, a vector y2)

are continuous – actually, have a reduced form with an additive, independent error – they do
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not currently help us with discrete EEVs.
With univariate y2, it possible to relax the additivity of v2 in the reduced form equation

under monotonicity assumptions. Like Blundell and Powell (2003), Imbens and Newey (2006)
consider the triangular system, but without additivity in the reduced form of y2:

y1  g1z1,y2,u1,     (4.8)

where u1 is a vector heterogeneity (whose dimension may not even be known)

y2  g2z,e2,     (4.9)

where g2z,  is strictly monotonic. This assumption rules out discrete y2 but allows some
interaction between the unobserved heterogeneity in y2 and the exogenous variables. As one
special case, Imbens and Newey show that, if u1,e2 is assumed to be independent of z, then a
valid control function to be used in a second stage is v2 ≡ Fy2|zy2,z, where Fy2|z is the

conditional distribution of y2 given z. Imbens and Newey described identification of various
quantities of interest, including the quantile structural function. When u1 is a scalar and
monotonically increasing in u1, the QSF is

QSFx1  g1x1,Quantu1,     (4.10)

where Quantu1 is the  th of u1. We consider quantile methods in more detail in the quantile
methods notes.
5. Methods for Panel Data

We can combine methods for handling correlated random effects models with control
function methods to estimate certain nonlinear panel data models with unobserved
heterogeneity and EEVs. Here we provide as an illustration a parametric approach used by
Papke and Wooldridge (2007), which applies to binary and fractional responses. The
manipulations are routine but point to more flexible ways of estimating the average marginal
effects. It is important to remember that we currently have no way of estimating, say,
unobserved effects models for fractional response variables, either with or without endogenous
explanatory variables. Even the approaches that treat the unobserved effects as parameters –
and use large T approximations – to not allow endogenous regressors. Plus, recall from the
nonlinear panel data notes that most results are for the case where the data are assumed
independent across time. Jackknife approaches further assume homogeneity across time.

We write the model with time-constant unobserved heterogeneity, ci1, and time-varying
unobservables, vit1, as
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Eyit1|yit2,zi,ci1,vit1  Eyit1|yit2,zit1,ci1,vit1  1yit2  zit11  ci1  vit1.     (5.1)

Thus, there are two kinds of potential omitted variables. We allow the heterogeneity, ci1, to be
correlated with yit2 and zi, where zi  zi1, . . . ,ziT is the vector of strictly exogenous variables
(conditional on ci1). The time-varying omitted variable is uncorrelated with zi – strict
exogeneity – but may be correlated with yit2. As an example, yit1 is a female labor force
participation indicator and yit2 is other sources of income. Or, yit1 is a test pass rate, and the
school leve, and yit2 is a measure of spending per student.

When we write zit  zit1,zit2, we are assuming zit2 can be excluded from the “structural”
equation (4.1). This is the same as the requirement for fixed effects two stage least squares
estimation of a linear model.

To proceed, we first model the heterogeneity using a Chamberlain-Mundlak approach:

ci1  1  z̄i1  ai1,ai1|zi ~ Normal0,a1
2 .     (5.2)

We could allow the elements of zi to appear with separate coefficients, too. Note that only
exogenous variables are included in z̄i. Plugging into (5.1) we have

Eyit1|yit2,zi,ai1,vit1  1yit2  zit11  1  z̄i1  ai1  vit1

≡ 1yit2  zit11  1  z̄i1  rit1.     (5.3)

Next, we assume a linear reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T,     (5.4)

where, if necessary, we can allow the coefficients in (5.4) to depend on t. The addition of the
time average of the strictly exogenous variables in (5.4) follows from the Mundlak (1978)
device. The nature of endogeneity of yit2 is through correlation between rit1  ai1  vit1 and
the reduced form error, vit2. Thus, yit2 is allowed to be correlated with unobserved
heterogeneity and the time-varying omitted factor. We also assume that rit1 given vit2 is
conditionally normal, which we write as

rit1  1vit2  eit1,     (5.5)

eit1|zi,vit2 ~ Normal0,e1
2 , t  1, . . . ,T.     (5.6)

Because eit1 is independent of zi,vit2, it is also independent of yit2. Using a standard mixing
property of the normal distribution,

Eyit1|zi,yit2,vit2  e1yit2  zit1e1  e1  z̄ie1  e1vit2     (5.7)
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where the “e” subscript denotes division by 1  e1
2 1/2. This equation is the basis for CF

estimation.
The assumptions used to obtain (5.7) would not hold for yit2 having discreteness or

substantively limited range in its distribution. It is straightfoward to include powers of vit2 in
(5.7) to allow greater flexibility. Following Wooldridge (2005) for the cross-sectional case, we
could even model rit1 given vit2 as a heteroskedastic normal.

In deciding on estimators of the parameters in (5.7), we must note that the explanatory
variables, while contemporaneous exogenous by construction, are not usually strictly
exogenous. In particular, we allow yis2 to be correlated with vit1 for t ≠ s. Therefore,
generalized estimation equations, that assume strict exogeneity – see the notes on nonlinear
panel data models – will not be consistent in general. We could apply method of moments
procedures. A simple approach is to use use pooled nonlinear least squares or pooled
quasi-MLE, using the Bernoulli log likelihood. (The latter fall under the rubric of generalized
linear models.) Of course, we want to allow arbitrary serial dependence and
Varyit1|zi,yit2,vit2 in obtaining inference, which means using a robust sandwich estimator.

The two step procedure is (i) Estimate the reduced form for yit2 (pooled across t, or maybe
for each t separately; at a minimum, different time period intercepts should be allowed).
Obtain the residuals, v̂it2 for all i, t pairs. The estimate of 2 is the fixed effects estimate. (ii)
Use the pooled probit QMLE of yit1 on yit2,zit1, z̄i, v̂it2 to estimate e1,e1,e1,e1 and e1.

Because of the two-step procedure, the standard errors in the second stage should be
adjusted for the first stage estimation. Alternatively, bootstrapping can be used by resampling
the cross-sectional units. Conveniently, if e1  0, the first stage estimation can be ignored, at
least using first-order asymptotics. Consequently, a test for endogeneity of yit2 is easily
obtained as an asymptotic t statistic on v̂it2; it should be make robust to arbitrary serial
correlation and misspecified variance. Adding first-stage residuals to test for endogeneity of an
explanatory variables dates back to Hausman (1978). In a cross-sectional contexts, Rivers and
Vuong (1988) suggested it for the probit model.

Estimates of average partial effects are based on the average structural function

Eci1,vit1 1yt2  zt11  ci1  vit1     (5.8)

with respect to the elements of yt2,zt1. It can be shown that

Ez̄i,vit2 e1yt2  zt1e1  e1  z̄ie1  e1vit2;     (5.9)
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that is, we “integrate out” z̄i,vit2 and then take derivatives or changes with respect to the
elements of zt1yt2. Because we are not making a distributional assumption about z̄i,vit2, we
instead estimate the APEs by averaging out z̄i, v̂it2 across the sample, for a chosen t:

N−1∑
i1

N

̂e1yt2  zt1̂e1  ̂e1  z̄i̂e1  ̂e1v̂it2.     (5.10)

APEs computed from (5.10) – typically with further averaging out across t and the values
of yt2 and zt1 – can be compared directly with linear model estimates, particular fixed effects
IV estimates.

We can use the approaches of Altonji and Matzkin (2005) and Blundell and Powell (2003)
to make the analysis less parametric. For example, we might replace (5.4) with
yit2  g2zit, z̄i  vit2 (or use functions in addition to , z̄i, as in AM). Then, we could maintain

Dci1  vit1|zi,vit2  Dci1  vit1|z̄i,vit2.

In the first estimation step, v̂it2 is obtained from a nonparametric or semiparametric pooled
estimation. Then the function

Eyit1|yit2,zi,vit2  h1xit11, z̄i,vit2

can be estimated in a second stage, with the first-stage residuals, v̂it2, inserted. Generally,
identification holds because the vit2 varying over time separately from xit1 due to time-varying
exogenous instruments zit2. The inclusion of z̄i requires that we have at least one time-varying,
strictly exogenous instrument for yit2.
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