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Missing Data
These notes discuss various aspects of missing data in both pure cross section and panel

data settings. We begin by reviewing assumptions under which missing data can be ignored
without biasing estimation or inference. Naturally, these assumptions are tied to “exogenous”
sampling.

We then consider three popular solutions to missing data: inverse probability weighting,
imputation, and Heckman-type selection corrections. The first to methods maintain “missing at
random” or “ignorability” or “selection on observables” assumptions. Heckman corrections,
whether applied to cross section data or panel data, linear models or (certain) nonlinear
models, allow for “selection on unobservables.” Unfortunately, their scope of application is
limited. An important finding is that all methods can cause more harm than good if selection is
on conditioning variables that are unobserved along with response variables.
1. When Can Missing Data be Ignored?

It is easy to obtain conditions under which we can ignore the fact that certain variables for
some observations, or all variables for some observations, have missing values. Start with a
linear model with possibly endogenous explanatory variables:

yi  xi  ui,     (1.1)

where xi is 1  K and the instruments zi are 1  L, L ≥ K. We model missing data with a
selection indicator, drawn with each i. The binary variable si is defined as si  1 if we can use
observation i, si  0 if we cannot (or do not) use observation i. In the L  K case we use IV on
the selected sample, which we can write as

̂IV  N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′yi

   N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′ui

    (1.2)

    (1.3)

For consistency, we essentially need

rank Esizi′xi  K     (1.4)

and

Esizi′ui  0,     (1.5)
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which holds if Ezi′ui|si  0, which in turn is implied by

Eui|zi, si  0.     (1.6)

Sufficient for (1.6) is

Eui|zi  0, si  hzi     (1.7)

for some function h. Note that the zero covariance assumption, Ezi′ui  0, is not sufficient
for consistency when si  hzi. A special case is when Eyi|xi  xi and selection si is a
function of xi. Provided the selected sample has sufficient variation in x, can consistently
estimate  by OLS on the selected sample.

We can use similar conditions for nonlinear models. What is sufficient for consistency on
the selected sample?

(Linear or Nonlinear) Least Squares: Ey|x, s  Ey|x.
Least Absolute Deviations: Medy|x, s  Medy|x
Maximum Likelihood: Dy|x, s  Dy|x.

All of these allow selection on x but not generally on y (or unobservables that affect y).
In the statistics literature, just using the data for which we observe all of yi,xi, zi (or just

yi,xi without instruments) is called the “complete case method.” In cases where we model
some feature of Dy|x, it is clear that the richer is x, the more likely ignoring selection will not
bias the results. In the case of estimating unconditional moments, say   Eyi, unbiasedness
and consistency of the sample on the selected sample requires Ey|s  Ey.

Similar conditions can be obtained for panel data. For example, if we model Dyt|xt, and
st is the indicator equal to one if xt,yt is observed, then the condition sufficient to ignore
selection is

Dst|xt,yt  Dst|xt, t  1, . . . ,T.     (1.8)

If, for example, xt contains yt−1, then selection is allowed to depend on the lagged response
under (1.8). To see that (1.8) suffices, let the true conditional density be ftyit|xit,. Then the
partial log-likelihood function for a random draw i from the cross section can be written as

∑
t1

T

sit log ftyit|xit,g ≡ ∑
t1

T

sitlitg.     (1.9)

Except for ensuring identifiability of , it suffices to show that Esitlit ≥ Esitlitg for all
g ∈ Γ (the parameter space). But by a well-known result from MLE theory – the
Kulback-Leibler information inequality –  maximizes Elitg|xit for all xit. But
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Esitlitg|xit  EEsitlitg|yit,xit|xit  EEsit|yit,xitlitg|xit
 EEsit|xitlitg|xit  Esit|xitElitg|xit,

where we used Esit|yit,xit  Esit|xit from (1.8). Because Esit|xit  Psit  1|xit ≥ 0, it
follows that Esitlit|xit ≥ Esitlitg|xit for all g ∈ Γ. Taking expectations of this inequality
and using iterated expectations gives the result. Thus, we have shown that  maximizes the
expected value of each term in the summand in (1.9) – often not uniquely – and so it also
maximizes the expected value of the sum. For identification, we have to assume it is the unique
maximizer, as is usually the case of the model is identified in an unselected population and the
selection scheme selects out “enough” of the population. One implication of this finding is that
selection is likely to be less of a problem in dynamic models where lags of y and lags of other
covariates appear, because then selection is allowed to be an arbitrary function of them. But,
what is ruled out by (1.8) is selection that depends on idiosyncratic shocks to y between t − 1
and t.

Methods to remove time-constant, unobserved heterogeneity deserve special attention.
Suppose we have the linear model, written for a random draw i,

yit   t  xit  ci  uit.     (1.10)

Suppose that we have instruments, say zit, for xit, including the possibility that zit  xit. If we
apply random effects IV methods on the unbalanced panel, sufficient for consistency (fixed T)
are

Euit|zi1, . . . , ziT, si1, . . . , siT,ci  0, t  1, . . . ,T     (1.11)

and

Eci|zi1, . . . , ziT, si1, . . . , siT  Eci  0,     (1.12)

along with a suitable rank condition. Somewhat weaker conditions suffice, but the general
point is that selection must be strictly exogenous with respect to the idiosyncratic errors as well
as the unobserved effect, ci. If we use the fixed effects estimator on the unbalanced panel, we
can get by with the first assumption, but, of course, all the instruments and selection to be
arbitrarily correlated with ci. To see why, consider the just identified case and define, say,

ÿit  yit − Ti−1∑r1
T siryir and similarly for and ẍit and z̈it, where Ti  ∑r1

T sir is the number of

time periods for observation i (properly viewed as random). The FEIV estimator is

3



Imbens/Wooldridge, Lecture Notes 12, Summer ’07

̂FEIV  N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitz̈it′ ÿit

   N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitz̈it′ uit .

Because z̈it is a function of zi1, . . . , ziT, si1, . . . , siT, (1.11) implies∑ t1
T Esitz̈it′ uit  0 (as do

weaker assumptions). There is a set of second moment assumptions that makes the usual,
nonrobust inference procedures valid, but these impose homoskedasticity and serial
independence of the uit conditional on zi, si,ci.

There are some simple ways to test for selection bias in panel data applications. One
important violation of (1.11) is when units drop out of the sample in period t  1 because of
shocks realized in time t. This generally induces correlation between si,t1 and uit. A simple test
in the FE environment is to simply add si,t1 to the equation at time t, and estimate the resulting
model by fixed effects (or FEIV). A simple t test can be used (probably fully robust). Of course
the test entails dropping the last time period, and it need not have power for detecting
correlation between sit and uit – that is, contemporaneous selection.

The consistency of FE (and FEIV) on the unbalanced panel under (1.11) breaks down if the
slope coefficients are random but one ignores this in estimatin. That is, replace  with bi but
still use the FE estimator. Then the error term contains the term xidi where di  bi − . If
selection is a function of di, then the usual FE estimator will be inconsistent. (Recall that the
FE estimator, on balanced panels, has some robustness to random slopes.) A simple test is to
allow di to be correlated with selection through the number of available time periods, Ti. The
idea is to consider alternatives with

Ebi|zi1, . . . , ziT, si1, . . . , siT  Ebi|si1, . . . , siT  Ebi|Ti.     (1.13)

Then, add interaction terms of dummies for each possible sample size (with Ti  T as the base
group),

1Ti  2xit, 1Ti  3xit, ..., 1Ti  T − 1xit     (1.14)

to the equation and estimate it by FE. Significance of these interaction terms indicates that
random slopes are correlated with the available time periods, and suggests one might have to
remove those random slopes (if possible).

If we first difference instead to remove ci – a method that has important advantages for
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attrition problems – we can apply the pooled IV results:

Δyit   t  Δxit  Δuit, t  2, . . . ,T     (1.15)

and, if zit is the set of IVs at time t, we can use

EΔuit|zit, sit  0     (1.16)

as being sufficient to ignore the missingess. Again, can add si,t1 to test for attrition.
Not suprisingly, nonlinear models with unosberved effects are considerably more difficult

to handle, although certain conditional MLEs (logit, Poisson) can accomodate selection that is
arbitrarily correlated with the unobserved effect.
2. Inverse Probability Weighting
2.1. Weighting with Cross-Sectional Data

A general solution to solving missing data problems when selection is not exogenous is
based on probability weights. To illustrate, for simplicity, suppose y is a random variable
whose population mean   Ey we would like to estimate, but some observations are
missing on y. Let yi, si, zi : i  1, . . . ,N indicate independent, identically distributed draws
from the population, where zi is a vector that, for now, we assume is always observed. Suppose
we assume the “selection on observables” assumption

Ps  1|y, z  Ps  1|z ≡ pz     (2.1)

where pz  0 for all possible values of z. Then we can solve the missing data problem by
weighting the observed data points by 1/pzi:

̃IPW  N−1∑
i1

N
si
pzi

yi,     (2.2)

where note that si selects out the observed data points. It is easy to show, using iterated
expectations, that ̂IPW is not only consistent for yi, it is unbiased, too. (This same kind of
estimator arises in treatment effect estimation.) Of course, except in special cases, we must
estimate pzi; when zi is always observed along with si, flexible binary response models such
as logit or probit, or nonparametric methods, can be used. Let p̂zi denote the estimated
selection probability (also called the propensity score). Then an operational estimator is

̂IPW  N−1∑
i1

N
si
p̂zi

yi.     (2.3)

As written, this estimator assumes we know the size of the random sample, N, which is not
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necessarily the case for some sampling schemes, such as variable probability sampling. We can
also write ̂IPW as

̂IPW  N1
−1N1/N∑

i1

N
si
p̂zi

yi  N1
−1∑

i1

N

si
̂
p̂zi

yi     (2.4)

where N1  ∑ i1
N si is the number of selected observations and ̂  N1/N is a consistent

estimate of Psi  1. The weights reported to account for missing data are often ̂/p̂zi,
which can be greater or less than unity. (By iterated expectatins,   Epzi.) Equation (2.4)
shows that ̂IPW is a weighted average of the observed data points with weights ̂/p̂zi. Yet a
different estimator is obtained by solving the least squares problem

minm ∑
i1

N
si
p̂zi

yi − m2,

which results in

 IPW  ∑
h1

N
sh
p̂zh

−1

∑
i1

N
si
p̂zi

yi ,     (2.5)

which is a different version a weighted.average.
Horowitz and Manski (1998) have considered the problem of estimating population means

using IPW. Their main focus is on establishing bounds that do not rely on potentially strong,
untestable assumptions such as the unconfoundedness assumption in (2.1). But they also note a
particular problem with certain IPW estimators even when the conditioning variable, x, is
always observed. They consider estimation of the mean Egy|x ∈ A for some set A. If we
define di  1xi ∈ A then the problem is to estimate Egy|d  1. HM point out that, if one
uses the weights commonly reported with survey data – weights that do not condition on the
event d  1 – then the IPW estimate of the mean can lie outside the logically possible values
of Egy|d  1. HM note that this problem can be fixed by using probability weights
Ps  1|d  1/Ps  1|d  1, z unfortunately, this choice is not possible when data on x can
also be missing.

Failure to condition on d  1 when computing the probability weights when interest lies in
Egy|d  1 is related to a general problem that arises in estimating models of conditional
means when data are missing on x. To see why, suppose the population regression function is
linear:
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Ey|x    x.     (2.6)

Let z be a variables that are always observed and let pz be the selection probability, as
before. Now, suppose that at least part of x is not always observed, so that x is not a subset of z.
This means that some elements of x cannot appear in pz because pz normally has to be
estimated using the data on si, zi for all i. The IPW estimator of  solves

min
a,b
∑
i1

N
si
p̂zi

yi − a − xib2.     (2.7)

Here is the problem: suppose that selection is exogenous in the sense that

Ps  1|x,y  Ps  1|x.     (2.8)

Then we saw in Section 1 that using least squares on the selected sample results in a consistent
estimator of   ,′ ′, which is also N -asymptotically normal. What about the weighted
estimator? The problem is that if (2.8) holds, and z does not include x, then it is very unlikely
that

Ps  1|x,y, z  Ps  1|z.     (2.9)

In other words, the key unconfoundedness assumption fails, and the IPW estimator of  is
generally inconsistent. We actually introduce inconsistency by weighting when a standard
unweighted regression on the complete cases would be consistent. In effect, the IPW estimator
uses weights that are functions of the wrong variables.

If x is always observed and can (and should) be included in z, then weighting is much more
attractive. Typically, z might contain lagged information, or interview information that would
not be included in x. If it turns out that selection is a function only of x, flexible estimation of
the model Ps  1|z will pick that up in large sample sizes.

If x is always observed and we know that Ps  1|x,y  Ps  1|x, is there any reason to
weight by 1/px? If Ey|x    x and Vary|x, weighting is asymptotically inefficient. If
Ey|x    x but Vary|x is heteroskedastic, then weighting may or may not be more
efficient than not. (The efficient estimator would be the WLS estimator that appropriately
accounts for Vary|x, different issue than probability weighting.) But both weighting and not
weighting are consistent. The advantage of weighting is that, if the population “model” is in
fact just a linear projection, the IPW estimator consistently estimates that linear projection
while the unweighted estimator does not. In other words, if we write
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Ly|1,x  ∗  x∗     (2.10)

where L| denotes the linear projection, then under Ps  1|x,y  Ps  1|x, the IPW
estimator is consistent for ∗. The unweighted estimator has a probabilty limit that depends on
px.

One reason to be interested in the LP is that the parameters of the LP show up in certain
treatment effect estimators. The notes on treatment effects contained a discussion of a “double
robustness” result due to Robins and Ritov (1997); see also Wooldridge (2007). The idea is
this. In treatment effect applications, the ATE requires estimation of Eyg for the two

counterfactual outcomes, g  0,1). The LP has the property that Ey1  1
∗  Ex1

∗, and so,
if we consistently estimate 1

∗ and 1
∗ then we can estimate Ey1 by averaging across x. A

similar statement holds for y0. Now, the IPW estimator identifies 1
∗ and 1

∗ if the model for
px is correctly specified. But if Ey1|x  1  x1 then the IPW estimator is consistent for
1 and 1 even if px is misspecified. And, of course, Ey1  1  Ex1. So, regardless of
whether we are estimating the conditional mean parameters or the LP parameters, we
consistently estimate Ey1. The case where the IPW estimator does not consistently estimate
Ey1 is when Ey1|x is not linear and px is misspecified.

The double robustness result holds for certain nonlinear models, too, although one must
take care in combining the conditional mean function with the proper objective function –
which, in this case, means quasi-log-likelihood function. The two cases of particular interest
are the logistic response function for binary or fractional responses coupled with the Bernoulli
QLL, and the exponential response function coupled with the Poisson QLL.

Returning to the IPW regression estimator that solves (2.7), suppose we assume the
ignorability assumption (2.9),

Eu  0, Ex ′u  0,

pz  Gz,

for a parametric function G (such as flexible logit), and ̂ is the binary response MLE. Then,
as shown by Robins, Rotnitzky, and Zhou (1995) and Wooldridge (2007), the asymptotic
variance of ̂IPW, using the estimated probability weights, is

Avar N ̂IPW −   Exi′xi−1Eriri′Exi′xi−1,     (2.11)

where ri is the P  1 vector of population residuals from the regression si/pzixi′ui on di′,
where di is the M  1 score for the MLE used to obtain ̂. The asymptotic variance of ̂IPW is
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easy to estimate:

∑
i1

N

si/Gzi, ̂xi′xi
−1

∑
i1

N

r̂ir̂i′ ∑
i1

N

si/Gzi, ̂xi′xi
−1

,     (2.12)

or, if xi is always observed, the terms si/Gzi, ̂ can be dropped in the outer parts of the

sandwich. In the case that di is the score from a logit model of si on functions, say, hzi, d̂i
has the simple form

d̂i  hi′si − hi̂,     (2.13)

where a  expa/1  expa and hi  hzi. This illustrates a very interesting finding of
Robins, Rotnitzky, and Zhou (1995) and related to the Hirano, Imbens, and Ritter (2003)
efficient estimator for means using IPW estimators. Suppose that, for a given set of functions
hi1, the logit model is correctly specified in the sense that there is a 1 such that
Psi  1|zi  hi11. Now suppose we take some additional functions of zi, say
hi2  h2zi, and add them to the logit. Then, asymptotically, the coefficients on hi2 are zero,
and so the adjustment to the asumptotic variance comes from regressing si/hi11xi′ui on
hi1,hi2si − hi11. Now, notice that, even though the coefficients on hi2 are zero in the
logit model, the score vector depends on hi1,hi2. Therefore, the residual variance from
regressing si/hi11xi′ui on hi1,hi2si − hi11 is generally smaller than that from using
the correct logit model, which is obtained from regressing on hi1si − hi11. By
overspecifying the logit model for si, we generally reduce the asymptotic variance of the IPW
estimator. And the process does not stop there. We can keep adding functions of zi to the logit
to reduce the asymptotic variance of the estimator of the IPW estimator. In the limit, if we have
chosen the sequence of functions so that they approximate any well-behaved function, then we
achieve asymptotic efficiency. This is precisly what the HIR estimator does by using a logit
series estimator for the propensity score.

Wooldridge (2007) shows that the adjustment to the asymptotic variance in (2.12) carries
over to general nonlinear models and estimation methods. One consequence is that ignoring
the estimation in p̂z – as commercial software typically does when specifying probability
weights – results in conservative inference. But the adjustment to obtain the correct asymptotic
variance is fairly straightforward.

Nevo (2003) explicitly considers a generalized method of moments framework, and shows
how to exploit known population moments to allow selection to depend on selected elements
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of the data vector w. (Hellerstein and Imbens (1998) use similar methods to improve estimation
when population moments are known.) In particular, Nevo assumes that, along with the
moment conditions Erw,  0, the population moments of the vector hw, say h, are
known. Under the assumption that selection depends on hw, that is,
Ps  1|w  Ps  1|hw, Nevo obtains an expanded set of moment conditions that can be
used to estimate  and the parameters  in the selection equation. Suppose we use a logit model
for Ps  1|hw. Then

E si
hwi

rwi,  0     (2.14)

and

E sihwi
hwi

 h.     (2.15)

Equation (2.15) generally identifies , and then this ̂ can be used in a second step to choose ̂
to make the weighted sample moments

N−1∑
i1

N
si

hwi̂
rwi, ̂     (2.16)

as close to zero as possible. Because (2.15) adds as many moment restrictions as parameters,
the GMM estimator using both sets of moment conditions is equivalent to the two-step
estimator just described.

Another situation where the missing data problem can be solved via weighting is when data
have been censored due to a censored duration. The response variable of interest may be the
duration, or it may be a variable observed only if a duration or survival time is observed. Let y
be a univariate response and x a vector of conditioning variables, and suppose we are interested
in estimating Ey|x. A random draw i from the population is denoted xi, yi. Let ti  0 be a
duration and let ci  0 denote a censoring time (where ti  yi is allowed). Assume that xi, yi
is observed whenever ti ≤ ci, so that si  1ti ≤ ci. Under the assumption that ci is
independent of xi, yi, ti,

Psi  1|xi,yi, ti  Gti,     (2.17)

where Gt ≡ Pci ≥ t. In order to use inverse probability weighting, we need to observe ti
whenever si  1, which simply means that ti is uncensored. Plus, we need only observe ci
when si  0. of ci. As shown in Wooldridge (2007), it is more efficient to estimate G using
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the density of minci, ti given ti. Generally, let hc, denote a parametric model for the
density of the censoring times, ci, and let Gt, be the implied model for Pci ≥ t. The log
likelihood is

∑
i1

N

1 − si loghci,  si logGti,,     (2.18)

which is just the log-likelihood for a standard censored estimation problem but where ti (the
underlying duration) plays the role of the censoring variable. As shown by Lancaster (1990 for
grouped duration data, where hc, is piecewise constant, the solution to (2.18) gives a
survivor function identical to the Kaplan-Meier estimator but where the roles of ci and ti are
reversed; that is, we treat ti as censoring ci. The linear regression model has a long history, and
has been studied recently by Honoré, Khan, and Powell (2002). See also Rotnitzky and Robins
(2005) for a survey of how to obtain semiparametrically efficient estimators. The
Koul-Susarla-van Ryzin (1981) estimator is an IPW least squares estimator, but their proposals
for inference are very difficult to implement. As shown by Wooldridge (2007), this is another
instance where estimating the selection probability by MLE is more efficient than using the
known probability (if you could). Plus, obtaining the smaller variance matrix involves only a
multivariate regression of the weighted score for the second stage problem – OLS, NLS, MLE,
or IV – on the score for the first-stage Kaplan-Meier estimation. This simple procedure is valid
when the distribution of ci is taken to be discrete. Other authors undertake the asymptotics
allowing for an underlying continuous censoring time, which makes estimating asymptotic
variances considerably more difficult.

2.2 Attrition in Panel Data

Inverse probability weighting can be applied to solve, in some cases, the attrition problem
in panel data. For concreteness, consider maximum pooled maximum likelihood, where we
model a density ftyt|xt for any conditioning variables xt. These need not be strictly
exogenous or always observed. Let ftyt|xt, be the parametric model, and let sit be the
selection indicator. We assume that attrition is absorbing, so sit  1  sir  1 for r  t. The
estimator that ignores attrition solves

max
∈Θ
∑
i1

N

∑
t1

T

sit log ftyit|xit,,     (2.19)

which is consistent if Psit  1|yit,xit  Psit  1|xit. This follows by showing
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EPsit  1|xitElog ftyit|xit,|xit, and using the fact that the true value of  maximizes
Elog ftyit|xit,|xit for all t, and Psit  1|xit ≥ 0. But, if selection depends on yit even after
conditioning on xit, the unweighted estimator is generally inconsistent. If wit  xit,yit, then
perhaps we can find variables r it, such that

Psit  1|wit,r it  Psit  1|r it ≡ pit  0, t  1, . . . ,T.     (2.20)

(The “obvious” set of variables r it  wit is not usually available since we will have estimate
the probabilities.) If we could observe the pit, we could use the weighted MLE,

max
∈Θ
∑
i1

N

∑
t1

T

sit/pit log ftyit|xit,,     (2.21)

which we call ̂w. The estimator ̂w is generally consistent because

Esit/pitqtwit,  Eqtwit,, t  1, . . . ,T, .     (2.22)

where qtwit,  log ftyit|xit, is the objective function.
How do we choose r it to make (2.20) hold (if possible)? A useful strategy, considered by

RRZ, is to build the pit up in a sequential fashion. At time t, zit is a set of variables observed
for the subpopulation with si,t−1  1. (si0 ≡ 1 by convention). Let

it  Psit  1|zit, si,t−1  1, t  1, . . . ,T.     (2.23)

Typically, zit contains elements from wi,t−1, . . . ,wi1, and perhaps variables dated at t − 1 or
earlier that do not appear in the population model. Unfortunately, zit rarely can depend on
time-varying variables that are observed in period t (since we have to apply a binary response
model for the sample with si,t−1  1, and this includes units that have left the sample at time t!)
Given the monotone nature of selection, we can estimate models for it sequential when the zit
are observed for every unit in the sample at time t − 1.

How do we obtain pit from the it? Not without some assumptions. Let
vit wit,zit, t  1, . . . ,T. An ignorability assumption that works is

Psit  1|vi1, . . . ,viT, si,t−1  1  Psit  1|zit, si,t−1  1, t ≥ 1.     (2.24)

That is, given the entire history vi vi1, . . . ,viT, selection at time t (given being still in the

sample at t − 1) depends only on zit; in practice, this means only on variables observed at t − 1.
This is a strong assumption; RRZ (1995) show how to relax it somewhat in a regression
framework with time-constant covariates. Using this assumption, we can show that

pit ≡ Psit  1|vi  iti,t−1   i1.     (2.25)
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In the general framework, we have r it zit, . . . ,zi1 but, because of the ignorability

assumption, it is as if we can take r it wi1,zi1, . . . , wiT,zit.

So, a consistent two-step method is:
(1) In each time period, estimate a binary response model for Psit  1|zit, si,t−1  1,

which means on the group still in the sample at t − 1. The fitted probabilities are the ̂it. Form
p̂it  ̂it̂i,t−1   ̂i1. Note that we are able to compute p̂it only for units in the sample at time
t − 1.

(2) Replace pit with p̂it in (2.21), and obtain the weighted M-estimator.
Consistency is straightforward – standard two-step estimation problem – if we have the

correct functional form and the ignorability of selection assumption holds. As shown by RRZ
(1995) in the regression case, it is more efficient to estimate the pit than to use know weights,
if we could. See RRZ (1995) and Wooldridge (2002) for a simple regression method for
adjusting the score; it is similar to that used for the cross section case, but just pooled across t.

IPW for attrition suffers from a similar drawback as in the cross section case. Namely, if
Psit  1|wit  Psit  1|xit then the unweighted estimator is consistent. If we use weights
that are not a function of xit in this case, the IPW estimator is generally inconsistent: weighting
uncessesarily causes inconsistency.

Related to the previous point is that it would be rare to apply IPW in the case of a model
with completely specified dynamics. Why? Suppose, for example, we have a model of
Eyit|xit,yi,t−1, . . . ,xi1,yi0. If our variables affecting attrition, zit, are functions of
yi,t−1, . . . ,xi1,yi0 – as they often must be – then selection is on the basis of conditioning
variables, and so the unweighted estimator is also consistent. RRZ (1995) explicitly cover
regressions that do not have correct dynamics.
3. Imputation

Section 1 discussed conditions under which dropping observations with any missing data
results in consistent estimators. Section 2 showed that, under an unconfoundedness
assumption, inverse probability weighting can be applied to the complete cases to recover
population parameters. One problem with using IPW for models that contain covariates is that
the weighting may actually hurt more than it helps if the covariates are sometimes missing and
selection is largely a function of those covariates.

A different approach to missing data is to try to fill in the missing values, and then analyze
the resulting data set as a complete data set. Imputation methods, and multiple imputation use
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either means, fitted values, values or averages from “similar” observations, or draws from
posterior distributions to fill in the missing values. Little and Rubin (2002) provides an
accessible treatment with lots of references to work by Rubin and coauthors.

Naturally, such procedures cannot always be valid. Most methods depend on a missing at
random (MAR) assumption. When data are missing on only one variable – say, the response
variable, y – MAR is essentially the same as the unconfoundedness assumption
Ps  1|y,x  Ps  1|x. (The assumption missing completely at random (MCAR) is when s
is independent of w  x,y.) MAR can be defined for general missing data patterns. For
example, in a bivariate case, let wi  wi1,wi2 be a random draw from the population, where
data can be missing on either variable. Let ri  ri1, ri2 be the “retention” indicators for wi1
and wi2, so rig  1 implies wig is observed. The MCAR assumption is that ri is independent of

wi, so Dri|wi  Dri. The MAR assumption is that implies
Pri1  0, ri2  0|wi  Pri1  0, ri2  0 ≡ 00, Pri1  1, ri2  0|wi1,
Pri1  0, ri2  1|wi2, and then
Pri1  1, ri2  1|wi  1 − 00 − Pri1  1, ri2  0|wi1 − Pri1  0, ri2  1|wi2. Even with
just two variables, the restrictions imposed by MAR are not especially appealing, unless, of
course, we have good reason to just assume MCAR.

MAR is more natural with monotone missing data problems, which sometime apply in
panel data situations with attrition. Order the wig so that if wih is observed the so is wig, g  h.

Then the retention indicators satisfy rig  1  ri,g−1  1. Under MAR, the joint density

fw1, . . . ,wG is easy to estimate. Write
fw1, . . . ,wG  fwG|wG−1, . . . ,w1  fwG−1|wG−1, . . . ,w1fw2|w1fw1. Given parametric
models, we can write partial log likelihood as

∑
g1

G

rig log fwig|wi,g−1, . . . ,wi1,,     (3.1)

where fw1|w0, ≡ fw1|w0,, and it suffices to multiply only by rig because

rig  rigri,g−1ri2. Under MAR,

Erig|wig, . . . ,wi1  Erig|wi,g−1, . . . ,wi1,     (3.2)

and so by (3.2),

Erig log fwig|wi
g−1|wi

g−1  Erig|wi
g−1Elog fwig|wi

g−1|wi
g−1.     (3.3)

The first term on the RHS of (3.3) is Erig|wi
g−1  Prig  1|wi

g−1 ≥ 0 and the true value of
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 maximizes the second part by the conditional Kullback-Leibler information inequality (for
example, Wooldridge (2002, Chapter 13)). Therefore, the parameters of the conditional
densities are generally identified, provided the missing data problem is not too severe.

Before briefly describing how multiple imputation works, a simple example helps illustrate
the general idea behind imputation. Suppose y is a random variable in a population with mean
y, but data are missing on some yi random drawn from the population. Let si be the binary

selection indicator, and let xi be a set of observed covariates. So, a random draw consists of
xi,yi, si but where yi is missing if si  0. As we discussed earlier, unless s is independent of
y – that is, the data are MCAR – the complete-case sample average,

̃y  ∑
i1

N

si
−1

∑
i1

N

siyi,     (3.4)

is not unbiased or consistent for y; its probability limit is, of course, Ey|s  1.

Suppose, however, that the selection is ignorable conditional on x:

Ey|x, s  Ey|x  mx,,     (3.5)

where mx, is, for simplicity, a parametric function. As we discussed in Section 1, nonlinear
least squares, and a variety of quasi-MLEs, are consistent for  using the selected sample.

Now, because we observe xi for all i, we can obtained fitted values, mxi, ̂, for any unit it the

sample. Let ŷ i  siyi  1 − simxi, ̂ be the imputed data. Then an imputation estimator of
y is

̂y  N−1∑
i1

N

siyi  1 − simxi, ̂.     (3.6)

The plim of ̂y is easy to find by replacing ̂ with  and sample average with the population

average:

Esiyi  1 − simxi,  EEsiyi|xi, si  E1 − simxi,
 EsiEyi|xi, si  E1 − simxi,
 Esimxi,  E1 − simxi,
 Emxi,  y.     (3.7)

(Of course, we could average the mxi, ̂ across all i, but that would throw away some
information on the yi that we observe.)

If Dy|x, s  Dy|x then we can use MLE on the complete cases, obtain estimates of the
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parameters, say ̂, and then use mxi, ̂ as above, where mx, is the mean function implied
by the model for Dy|x. For example, y could be a corner solution response and then we use a
Tobit or some flexible extension for Dy|x.

One danger in using even simple imputation methods like the one just covered is that we
will ignore the errors in the imputed values. ŷ i differs from yi for two reasons. First, if we write

yi  mxi,  ui,     (3.8)

then, even if we knew , the error would be ui. (In effect, we are replace yi with its conditional
expectation.) Having to estimate  further introduces estimation error. Analytical formulas can
be worked out, but bootstrapping a standard error or confidence interval for ̂y is also

straightforward: we would draw observation indices at random, without replacement, and
perform the imputation steps on each new bootstrap sample.

As an example of how just using the imputed values as if they were real data, suppose we

run a linear regression using the complete data and obtain xi̂. Again defining

ŷ i  siyi  1 − sixi̂, suppose we use the imputed data set to reestimate . It is well known

that we just get ̂ back again. However, our estimated error variance will be too small because
every residual for an imputed data point is identically zero. It follows that, while SSR/N1 − K
is generally unbiased for u2 (under the Gauss-Markov assumptions), where N1 is the number
of complete cases, SSR/N − K has a downward bias.

The previous method ignores the random error in (3.4); Little and Rubin (2002) call it the
method of “conditional means.” Generally, as they show in Table 4.1, the method of
conditional means results in downward bias in estimating variances. Instead, LR propose

adding a random draw to mxi, ̂ to impute a value. Of course, this entails have a distribution

from which to draw the ui. If we assume that ui is independent of xi and normally distributed,
then we can draw, say, u i from a Normal0, ̂u2, distribution, where ̂u2 is estimated using the
complete case nonlinear regression residuals. This procedure works well for estimating y2 in

the case where linear regression is used and xi,yi is jointly normal. LR refer to this as the
“conditional draw” method of imputation, which is a special case of stochastic imputation.

Little and Rubin argue that the conditional draw approach, at least in the jointly normal
case, works well when a covariate is missing. Suppose that x  x1,x2 and data are missing
on x2 but not x1,y. One possibility for imputing xi2 when it is missing is to regress xi2 on xi1
using the complete cases, and then use fitted values, or conditional draws, to impute xi2. LR
show that the method of conditional draws (not conditional means) works well when y is
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included along with x1 in obtained the estimated conditional means from the complete-case
regression.

Unfortunately, except in simple cases, it is difficult to quantity the uncertainty from
single-imputation methods, where one imputed values is obtained for each missing variable.
One possibility, which has been studied in the statistics literature, is to bootstrap the entire
estimation method – assuming, of course, that the imputations eliminates the nonresponse bias
(so that missing at random holds). In the example of conditional draws above, the imputation
procedure is simply included in any subsequent estimation, and bootstrap samples are obtained
over and over again. On each bootstrap replication, say b, an estimate of the parameters using

the complete cases, ̂complete
b is obtained (which would be the beta hats and error variance

estimate in the regression case), missing data values are imputed using conditional draws, and

then an estimate of  using the imputed data, ̂imputed
b , can be obtained. Of course, this can be

computationally intensive for nonlinear estimation problems.
An alternative is the method of multiple imputation. Its justification is Bayesian, and based

on obtaining the posterior distribution – in particular, mean and variance – of the parameters
conditional on the observed data. For general missing data patterns, the computation required
to impute missing values is quite complicated, and involves simulation methods of estimation.
LR and Cameron and Trivedi (2005) provide discussion. But the idea is easily illustrated using
the above example. Rather than just impute one set of missing values to create one “complete”
data set, created several imputed data sets. (Often the number is fairly small, such as five or
so.) Then, estimate the parameters of interest using each imputed data set, and then use an
averaging to obtain a final parameter estimate and sampling error.

Briefly, let Wmis denote the matrix of missing data and Wobs the matrix of observations.
Assume that MAR holds. Then multiple imputation is justified as a way to estimate E|Wobs,
the posterier mean of  given Wobs. But by iterated expectations,

E|Wobs  EE|Wobs,Wmis|Wobs.     (3.9)

Now, if we can obtain estimates ̂d  E|Wobs,Wmis
d  for imputed data set d, then we can

approximate E|Wobs as

̄  D−1∑
d1

D

̂d,     (3.10)

which is just the average of the parameter estimates across the imputed samples.
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Further, we can obtain a “sampling” variance by estimating Var|Wobs using

Var|Wobs  EVar|Wobs,Wmis|Wobs  VarE|Wobs,Wmis|Wobs,     (3.11)

which suggests

Var|Wobs  D−1∑
d1

D

V̂d  D − 1−1∑
d1

D

̂d − ̄̂d − ̄
′

≡ V̄  B,

    (3.12)

where V̄ is the average of the variance estimates across imputed samples and B is the
between-imputation variance. For small a small number of imputations, a correction is usually
made, namely, V̄  1  D−1B. Therefore, assume that one trusts the MAR assumption, and
the underlying distributions used to draw the imputed values, inference with multiple
imputations is fairly straightforward. Because D need not be very large, estimation of
nonlinear models using multiple imputations is not computationally prohibitive (once one has
the imputed data, of course).

Like weighting methods, imputation methods have an important shortcoming when applied
to estimation of models with missing conditioning variables. Suppose again that x  x1,x2,

we are interested in some feature of the conditional distribution Dy|x, data are missing on y
and x2 – say, for the same units – and selection is a function of x2. Then, as we discussed in
Section 1, MLE using the complete cases is consistent, asymptotically normal, and inference is
standard. What about imputation methods? Because they generally rely on MAR, they would
require that Ds|y,x1,x2  Ds|x1. Because this is false in this example, MI cannot be
expected to produce convincing imputations.

Imputation for the monotone case discussed above is relatively straightforward under
MAR, and MAR is at least plausible. Because the conditional densities are identified,
imputation can proceed sequentially: given wi1 and ̂, missing values on wi2 can be imputed by
drawing from f2|wi1, ̂. Then, wi3 can be imputed by drawing from f|ŵi2,wi1, ̂, where ŵi2
may or may not be imputed. And so on.
4. Heckman-Type Selection Corrections
4.1. Corrections with Instrumental Variables

Here we briefly cover the well-known Heckman selection correction with endogenous
explanatory variables in a linear model. The model is
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y1  z11  1y2  u1

y2  z2  v2

y3  1z3  v3  0.

    (4.1)
    (4.2)
    (4.3)

where z is 1  L with first element unity (and also in z1). As usually, L1  L for identification.
The key point to be made here is, depending on how the Heckman correction is carried out in
this case, (4.2) can just be a linear projection – in which case the nature of y2 is unrestricted –
or, effectively, v2 must be normal and independent of z. Intuitively, we need two elements in z
not also in z1: loosely, one to induce exogenous variation in y2 and the other to induce
exogenous variation in selection. If we assume (a) z,y3 is always observed, y1,y2 observed
when y3  1; (b) Eu1|z,v3  1v3; (c) v3|z ~Normal0,1; (d) Ez′v2  0 and 22 ≠ 0, then
we can write

y1  z11  1y2  gz,y3  e1     (4.4)

where e1  u1 − gz,y3  u1 − Eu1|z,y3. So, selection is exogenous in (4.4) because
Ee1|z,y3  0. Because y2 is not exogenous, we estimate (4.4) by IV, using the selected
sample, where the instruments are z,z3 because gz, 1  z3. So, the two-step
estimator is

(i) Probit of y3 on z to (using all observations) to get ̂i3 ≡ zi̂3

(ii) IV (2SLS if overidentifying restrictions) of yi1 on zi1,yi2, ̂i3 using the selected
sample and instruments zi, ̂i3.

If y2 is always observed, it is tempting to obtain the fitted values ŷ i2 from the reduced form
yi2 on zi, and then use OLS of yi1 on zi1,ŷ i2, ̂i3 in the second stage. But this effectively puts
1v2 in the error term, so we would need u1  2v2 to be normal (or something similar); it
would not be consistent for discrete y2, for example. Implicitly, the reduced form estimated by
the proper two-step procedure is, on the selected sample, y2  z2  2z3  r3. But this is
just a linear projection; generally, the rank condition on the selected sample should hold if z
causes sufficient variation in y2 and y3 in the population.

This example raises another point: even if y2 is exogenous in the full population, one
should generally treat it as endogenous in the selected subsample. Why? Because y2 cannot be
included in the first-stage probit if it is not always observed, so consistency of the Heckman
procedure would require Py3  1|z1,y2  Py3  1|z1, a tenuous assumption. Unless we
have an instrument for y2, simply treating it as exogenous in the second stage after omitting it
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from the first is tantamount to imposing an exclusion restriction on a reduced form.
In addition to the linear model, with or without endogenous variables, Heckman-type

corrections are available for a limited set of nonlinear models. Terza (1998) contains the
approach for exponential functions with exogenous explanatory variables, where the selection
equation follows a probit; see also Wooldridge (2002, Chapter 19). A selection correction is
also fairly easy to implement in probit models, too; see Wooldridge (2002, Chapter 17). As in
trying to account for endogenous explanatory variables in such models, merely inserting an
estimated inverse Mills ratio inside, say, an exponential model, or probit model, or Tobit
model. One can always base a test on a variable-addition approaches, but they cannot be shown
to solve the selection problem.

A very similar issue arises when using Heckman’s method to correct for attrition in panel
data (when selection on observables does not hold). With attrition as an absorbing state, it is
common to estimate models in first differences to remove additive heterogeneity, say

Δyit  Δxit  Δuit, t  2, . . . ,T.     (4.5)

We assume sit  1  sir  1, r  t. Let wit be a set of variables that we always observe when
si,t−1  1 such that wit is a good predictor of selection – in a sense soon to be made precise.
We model the selection in time period t conditional on si,t1  1 as

sit  1wit t  vit  0
vit|wit, si,t−1  1~Normal0,1, t  2,3, . . . ,T.

    (4.6)
    (4.7)

Since attrition is an absorbing state, sit−1  0 implies sit  0. This leads to a probit model for
sit conditional on si,t−1  1 :

Psit  1|wit, si,t−1  1  wit t, t  2, . . . ,T.     (4.8)

Naturally, we need to estimate  t, which we do as a sequence of probits. For t  2, we use the
entire sample to estimate a probit for still being in the sample in the second period. For t  3,
we estimate a probit for those units still in the sample as of t  2. And so on. When we reach
t  T, we have the smallest group of observations because we only use units still in the sample
as of T − 1. Where might the wit come from? Since they have to be observed at time t for the
entire subgroup with si,t−1  1, wit generally cannot contain variables dated at time t (unless
some information is known at time t on people who attrit at time t). When the xit are strictly
exogenous, we can always include in wit elements of xi,t−1,xi,t−2, . . . ,xi1. Note that the
potential dimension of wit grows as we move ahead through time. Unfortunately, yi,t−1 cannot
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be in wit because yi,t−1 is necessarily correlated with Δuit. But, if we assume that

Euit|xi,yi,t−1, . . . ,yi1,ci  0, t  2, . . . ,T, |     (4.9)

then elements from yi,t−2,yi,t−3, . . . ,yi1 can be in wit. If we start with a model where xit is
strictly exogenous, as in standard panel data models, assumption (4.9) is very strong because in
such models uit tends to be serially correlated, and therefore correlated with lagged yit in
general. Still, since we are allowing for ci, it might be that the errors uit are serially
uncorrelated.

In what sense do we need the wit to be good predictors of attrition? A sufficient condition
is, given si,t−1  1,

Δuit,vit is independent of Δxit,wit.     (4.10)

Now, Δuit is independent of Δxit,wit holds if wit contains only lags of xit because we assume
xit is strictly exogenous. Unfortunately, vit is independent of Δxit,wit can be very restrictive
because Δxit cannot be included in wit in interesting cases (because xit is not observed for
everyone with si,t−1  1. Therefore, when we apply a sequential Heckman method, we must
omit at least some of the explanatory variables in the first-stage probits. If attrition is largely
determined by changes in the covariates (which we do not see for everyone), using pooled
OLS on the FD will be consistenty, whereas the Heckman correction would actually cause
inconsistency.

As in the cross section case, we can “solve” this problem by using instrumental variables
for any elements of Δxit not observed at time t. Assume sequential exogeneity, that is

Euit|xit,xi,t−1, . . . ,xi1,ci  0, t  1, . . . ,T.     (4.11)

(Recall that this condition does allow for lagged dependent variables in xit). We now replace
(4.10) with

Δuit,vit is independent of zit,wit     (4.12)

conditional on si,t−1  1. Choosing zit to be a subset of wit is attractive, because then (4.12)
EΔuit|zit,wit,vit, si,t−1  1  EΔuit|wit,vit, si,t−1  1, in which case (4.12) holds if Δuit,vit
is independent of wit given si,t−1  1. Then, after a sequence of probits (where, in each time
period, we use observations on all units available in the previous time periods), we can apply
pooled 2SLS, say, on the selected sample, to the equation

Δyit  Δxit  2d2t̂it  3d3t̂it . . .TdTt̂it  errorit.     (4.13)
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with instruments zit,d2t̂it,d3t̂it, . . . ,dTt̂it. Because ̂it depends on wit, it is critical to have
an element in wit moving around selection separately from its correlation with Δxit.

One can also test and correct for selection bias for any pattern of missing data on the
response variable (or, generally, on endogenous explanatory variables). The key is that data are
always observed on variables taken to be strictly exogenous, conditional on unobserved
heterogeneity. Semykina and Wooldridge (2006) work through the details for the model

yit  xit  ci  uit
Euit|zi,ci  0,

    (4.14)

where zi  zi1, . . . , ziT, so that some elements of xit are possibly endogenous, but the
instruments, zit, are strictly exogenous but allowed to be correlated with ci. A simple test for
correlation between sit and the idiosyncratic error – which, recall from Section 1, causes
inconsistency in the FE-IV estimator, is available using Heckman’s approach. In the first stage,
estimate a pooled probit, or separate probit models, on zit and, say, the time averages, z̄i.
Obtain estimated inverse Mills ratios. Then, estimate the equation

yit  xit  ̂ it  ci  errorit     (4.15)

by FEIV, and use a standard (but robust) test of   0. This allows for endogeneity of xit under
H0, and so is a pure selection bias test. Or, the ̂it can be interacted with year dummies. The
usefulness of this test is that it maintains only EEuit|zi, si,ci  0 under H0. Unfortunately, as
a correction procedure, it generally does not lead to consistent estimators. (See Semykina and
Wooldridge (2006).) As it turns out, a procedure that does produce consistent estimates under
certain assumptions is just to add the time-average of the instruments, z̄i, to (4.15) and use
pooled IV, where z̄i and ̂it act as their own instruments.
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