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1. When Can Missing Data be Ignored?

∙ Linear model with IVs:

yi  xi  ui,     (1)

where xi is 1  K, instruments zi are 1  L, L ≥ K. Let si is the selection

indicator, si  1 if we can use observation i. With L  K, the

“complete case” estimator is

̂IV  N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′yi

   N−1∑
i1

N

sizi′xi
−1

N−1∑
i1

N

sizi′ui

    (2)

    (3)
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For consistency, rank Ezi′xi|si  1  K and

Esizi′ui  0,     (4)

which is implied by

Eui|zi, si  0.     (5)

Sometimes we can add a function of zi to the equation that forces (5) to

be true. Sufficient for (5) is

Eui|zi  0, si  hzi     (6)

for some function h.

∙ Zero covariance assumption in the population, Ezi′ui  0, is not

sufficient for consistency when si  hzi. Special case is when
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Eyi|xi  xi and selection si is a function of xi.

∙ Nonlinear models/estimation methods:

Nonlinear Least Squares: Ey|x, s  Ey|x.

Least Absolute Deviations: Medy|x, s  Medy|x

Maximum Likelihood: Dy|x, s  Dy|x or Ds|y,x  Ds|x.

∙ All of these allow selection on x but not generally on y. For

estimating   Eyi, unbiasedness and consistency of the sample on

the selected sample requires Ey|s  Ey.

∙ Panel data: if we model Dyt|xt, and st is the selection indicator, the

sufficient condition to ignore selection is

Dst|xt,yt  Dst|xt, t  1, . . . ,T.     (7)
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Let the true conditional density be ftyit|xit,. Then the partial

log-likelihood function for a random draw i from the cross section can

be written as

∑
t1

T

sit log ftyit|xit,g ≡ ∑
t1

T

sitlitg.     (8)

Can show under (7) that

Esitlitg|xit  Esit|xitElitg|xit.     (9)

By the Kullback-Leibler information inequality,

Elit|xit ≥ Elitg|xit for all g ∈ Γ (parameter space). Because

Esit|xit  Psit  1|xit ≥ 0, it follows that

Esitlit|xit ≥ Esitlitg|xit for all g ∈ Γ. Apply LIE again to
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conclude  maximizes the expected value of (8). We cannot just

initially appeal to genearl MLE results; (8) is not a proper

log-likelihood function.

∙ If xit includes, say, yi,t−1, then (7) allows selection to depend on yi,t−1,

but not on “shocks” from t − 1 to t.

∙ Similar findings for nonlinear least squares, quasi-MLE, quantile

regression.

∙Methods to remove time-constant, unobserved heterogeneity:

suppose we have the linear model, written for a random draw i,

yit   t  xit  ci  uit,     (10)

with instruments zit for xit. Random effects IV methods on the
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unbalanced panel use

Euit|zi1, . . . , ziT, si1, . . . , siT,ci  0, t  1, . . . ,T     (11)

and

Eci|zi1, . . . , ziT, si1, . . . , siT  Eci  0.     (12)

Selection in any time period cannot depend on uit or ci.

∙ FE on unbalanced panel means we can get by with just the first

assumption. Let ÿit  yit − Ti−1∑r1
T siryir and similarly for and ẍit and

z̈it, where Ti  ∑r1
T sir is the number of time periods for observation i.

The FEIV estimator is
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̂FEIV  N−1∑
i1

N

∑
t1

T

sitz̈it′ ẍit
−1

N−1∑
i1

N

∑
t1

T

sitz̈it′ yit .

Weakest condition for consistency is∑t1
T Esitz̈it′ uit  0.

∙ One important violation of (11) is when units drop out of the sample

in period t  1 because of shocks uit realized in time t. This generally

induces correlation between si,t1 and uit. To test, just add si,t1 to the

equation at time t, estimate the model by fixed effects (or FEIV), and

compute (robust) t test.

∙ Consistency of FE (and FEIV) on the unbalanced panel under (11)

breaks down if the slope coefficients are random and one ignores this in

estimation. (Earlier: FE and FEIV still can produce consistent
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estimators in balanced case.) The error term contains the term xidi
where di  bi − . Simple test based on the alternative

Ebi|zi1, . . . , ziT, si1, . . . , siT  Ebi|Ti.     (13)

Then, add interaction terms of dummies for each possible sample size

(with Ti  T as the base group):

1Ti  2xit, 1Ti  3xit, ..., 1Ti  T − 1xit.     (14)

Estimate equation by FE or FEIV.

∙ Can use FD in basic model, too, which is very useful for attrition

problems (later). Generally, if

Δyit  t  Δxit  Δuit, t  2, . . . ,T     (15)
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and, if zit is the set of IVs at time t, we can use

EΔuit|zit, sit  0     (16)

as being sufficient to ignore the missingess. Again, can add si,t1 to test

for attrition.

∙ Not suprisingly, nonlinear models with unosberved effects are

considerably more difficult to handle, although certain conditional

MLEs (logit, Poisson) can accomodate selection that is arbitrarily

correlated with the unobserved effect.

2. Inverse Probability Weighting

Weighting with Cross-Sectional Data

∙When selection is not on conditioning variables, can try to use
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probability weights to reweight the selected sample to make it

representative of the populatin. Suppose y is a random variable whose

population mean   Ey we would like to estimate, but some

observations are missing on y. Let yi, si, zi : i  1, . . . ,N indicate

independent, identically distributed draws from the population, where

zi is always observed (for now). “Selection on observables” assumption

Ps  1|y, z  Ps  1|z ≡ pz     (17)

where pz  0 for all possible values of z. Consider

̃IPW  N−1∑
i1

N
si
pzi

yi,     (18)

where si selects out the observed data points. Using (17) and iterated
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expectations, can show ̂IPW is consistent (and unbiased) for yi. (Same

kind of estimate used for treatment effects.)

∙ Sometimes pzi is known (variable probability stratified sampling),

but mostly it needs to be estimated. (And, even for VP sampling, it

should be estimated if possible.) Let p̂zi denote the estimated

selection probability:

̂IPW  N−1∑
i1

N
si
p̂zi

yi.     (19)

Can also write as

̂IPW  N1
−1∑

i1

N

si
̂
p̂zi

yi     (20)
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where N1  ∑i1
N si is the number of selected observations and

̂  N1/N is a consistent estimate of Psi  1. The weights reported to

account for missing data are often ̂/p̂zi.

∙ A different estimate is obtained by solving the least squares problem

minm ∑
i1

N
si
p̂zi

yi − m2.

∙ Horowitz and Manski (1998) have considered the problem of

estimating population means using IPW. They focus on bounds in

estimating Egy|x ∈ A for conditioning variables, x. But they also

note a problem with certain IPW estimators based on weights that

estimate Ps  1/Ps  1|d  1, z: the resulting estimate of the mean
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can lie outside the natural bounds (when gy is bounded). One should

use Ps  1|x ∈ A/Ps  1|x ∈ A, z if possible (which are not the

included sampling weights). Unfortunately, cannot generally estimate

the proper weights if x is sometimes missing.

∙ The HM problem is related to another issue. Suppose

Ey|x    x.     (21)

Let z be a variables that are always observed and let pz be the

selection probability, as before. Suppose at least part of x is not always

observed, so that x is not a subset of z. Consider the IPW estimator of ,

 solves
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min
a,b
∑
i1

N
si
p̂zi

yi − a − xib2.     (22)

The problem is that if

Ps  1|x,y  Ps  1|x,     (23)

the IPW is generally inconsistent because the condition

Ps  1|x,y, z  Ps  1|z     (24)

is unlikely. On the other hand, if (23) holds, we can consistently

estimate the parameters using OLS on the selected sample.

∙ If x is always observed, case for weighting is much stronger because

then x ⊂ z. If selection is on x, this should be picked up in large

15



samples in the estimation of Ps  1|z.

∙ If (23) holds and x is always observed, is there a reason to use IPW?

Not if we believe (21) along with the homoskedasticity assumption

Vary|x  2. Then, OLS is efficient and IPW is less efficient. IPW

can be more efficient with heteroskedasticity (but WLS with the correct

heteroskedasticity function would be best).

∙ Still, one can argue for weighting under (23) as a way to consistently

estimate the linear projection. Write

Ly|1,x  ∗  x∗     (25)

where L| denotes the linear projection. Under under

Ps  1|x,y  Ps  1|x, the IPW estimator is consistent for ∗. The
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unweighted estimator has a probabilty limit that depends on px.

∙ Parameters in LP show up in certain treatment effect estimators, and

are the basis for the “double robustness” result of Robins and Ritov

(1997) in the case of linear regression.

∙ The double robustness result holds for certain nonlinear models, but

must choose model for Ey|x and the objective function appropriately;

see Wooldridge (2007). (For binary or fractional response, use logistic

function and Bernoulli quasi-log likelihood (QLL). For nonnegative

response, use exponential function with Poisson QLL.)

∙ Return to the IPW regression estimator under

Ps  1|y, z  Ps  1|z  Gz,, with
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Eu  0, Ex′u  0,     (26)

for a parametric function G (such as flexible logit), and ̂ is the

binary response MLE. As shown by Robins, Rotnitzky, and Zhou

(1995) and Wooldridge (2007), the asymptotic variance of ̂IPW, using

the estimated probability weights, is

Avar N ̂IPW −   Exi′xi−1Eriri′Exi′xi−1,     (27)

where ri is the P  1 vector of population residuals from the regression

si/pzixi′ui on di′, where di is the M  1 score for the MLE used to

obtain ̂. This is always smaller than the variance if we knew pzi.

Leads to a simple estimate of Avar̂IPW:
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∑
i1

N

si/Ĝixi′xi
−1

∑
i1

N

r̂ir̂i′ ∑
i1

N

si/Ĝixi′xi
−1

    (28)

If selection is estimated by logit with regressors hi  hzi,

d̂i  hi′si − hi̂,     (29)

where a  expa/1  expa and hi  hzi.

∙ Illustrates an interesting finding of RRZ (1995), related to the Hirano,

Imbens, and Ritter (2003) efficient estimator for means using IPW

estimators. Suppose for functions hi1  h1zi, the logit model is

correctly specified: Psi  1|zi  hi11. Now take additional

functions, hi2  h2zi, and add them to the logit. Asymptotically, the
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coefficients on hi2 are zero, so the adjustment to variance of ̂IPW
comes from regressing si/hi11  xi′ui on

si − hi11  hi1,hi2. This reduces the residual variance relative

to just using hi1, so ̂IPW using hi1,hi2 generaly more efficient than

using the “correct” functions, hi1. HIR estimator keeps expanding hi.

∙Wooldridge (2007): adjustment in (27) carries over to general

nonlinear models and estimation methods. Ignoring the estimation in

p̂z, as is standard, is asymptotically conservative. When selection is

exogenous in the sense of Ps  1|x,y, z  Ps  1|x, the adjustment

makes no difference.

∙ As a particular example, consider VP sampling. It one uses the
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known sampling probabilities (probability of keeping an observation

that falls into a given stratum), this is less efficient than using the

frequencies estimated from the data. (These require knowing how many

times each stratum was sampled.) When the latter are used, the

adjustment is to subtract off within-stratum means in computing the

sampling variation in the score:

Avar̂ −   ∑
i1

M

xi′xi/p̂gi

−1
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 ∑
g1

G

p̂g−2 ∑
i1

Mg

xgi′ ûgi − xg′ ûgxgi′ ûgi − xg′ ûg′

 ∑
i1

M

xi′xi/p̂gi

−1

    (30)

absorbing the intercept into xi. If we drop xg′ ûg from the middle, we get

the usual sandwich estimator for weighted least squares, which is larger

than (30). Generally, the adjustment in (30) is the sourced of variance

reduction using knowledge of stratum membership (with and without

clustered data, too).

∙ Nevo studies the case where the population moments are

Erwi,  0 and the selection probability depends on elements of
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wi that are not always observed, and uses information on population

means Ehwi such that Ps  1|w  Ps  1|hw to obtain an

expanded set of moment conditions for GMM estimation. So, if we use

a logit model for selection,

E si
hwi

rwi,  0     (31)

and

E sihwi
hwi

 h     (32)

where h is known. Equation (32) generally identifies , and then this ̂

can be used in a second step to choose ̂ in a weighted GMM
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procedure.

∙ IPW can be used when data are missing due to a censored duration,

ti, where ci is the censoring time. The needed probabilities turn out to

be Gti where Gt ≡ Pci ≥ t is the survivor function for the

censoring values. This can be estimated using Kaplan-Meier estimator

with roles of ci and ti are reversed. See Rotnitzky and Robins (2005)

for a survey of how to obtain semiparametrically efficient estimators in

linear regression. Holds for lots of nonlinear models, too.

Attrition in Panel Data

∙ Inverse probability weighting can be applied to the attrition problem

in panel data. Many estimation methods can be used, but consider
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MLE. We have a parametric density, ftyt|xt,, and let sit be the

selection indicator. We already discussed just using pooled OLS on on

the observed data:

max
∈Θ
∑
i1

N

∑
t1

T

sit log ftyit|xit,,     (33)

which is consistent if Psit  1|yit,xit  Psit  1|xit. If not, maybe

we can find variables rit, such that

Psit  1|wit,rit  Psit  1|rit ≡ pit  0     (34)

where wit  xit,yit. The weighted MLE is
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max
∈Θ
∑
i1

N

∑
t1

T

sit/pit log ftyit|xit,.     (35)

Under (34), ̂IPW is generally consistent because

Esit/pitqtwit,  Eqtwit,     (36)

where qtwit,  log ftyit|xit,.

∙ How do we choose rit to make (34) hold (if possible)? RRZ (1995)

propose a sequential strategy,

it  Psit  1|zit, si,t−1  1, t  1, . . . ,T.     (37)

Typically, zit contains elements from wi,t−1, . . . ,wi1

∙ How do we obtain pit from the it? Not without some strong
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assumptions. Let vit wit,zit, t  1, . . . ,T. An ignorability assumption

that works is

Psit  1|vi, si,t−1  1  Psit  1|zit, si,t−1  1.     (38)

That is, given the entire history vi  vi1, . . . ,viT, selection at time t

depends only on variables observed at t − 1. RRZ (1995) show how to

relax it somewhat in a regression framework with time-constant

covariates. Using this assumption, we can show that

pit ≡ Psit  1|vi  iti,t−1   i1.     (39)

So, a consistent two-step method is: (i) In each time period, estimate a

binary response model for Psit  1|zit, si,t−1  1, which means on the

group still in the sample at t − 1. The fitted probabilities are the ̂it.
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Form p̂it  ̂it̂i,t−1   ̂i1. (ii) Replace pit with p̂it in (35), and obtain

the weighted pooled MLE.

∙ As shown by RRZ (1995) in the regression case, it is more efficient

to estimate the pit than to use know weights, if we could. See RRZ

(1995) and Wooldridge (2002) for a simple regression method for

adjusting the score.

∙ IPW for attrition suffers from a similar drawback as in the cross

section case. Namely, if Psit  1|wit  Psit  1|xit then the

unweighted estimator is consistent. If we use weights that are not a

function of xit in this case, the IPW estimator is generally inconsistent.

∙ Related to the previous point: would rarely apply IPW in the case of a
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model with completely specified dynamics. Why? If we have a model

for Dyit|xit,yi,t−1, . . . ,xi1,yi0 or Eyit|xit,yi,t−1, . . . ,xi1,yi0, then our

variables affecting attrition, zit, are likely to be functions of

yi,t−1, . . . ,xi1,yi0. If they are, the unweighted estimator is consistent.

For misspecified models, we might still want to weight.

3. Imputation

∙ So far, we have discussed when we can just drop missing

observations (Section 1) or when the complete cases can be used in a

weighting method (Section 2). A different approach to missing data is

to try to fill in the missing values, and then analyze the resulting data

set as a complete data set. Little and Rubin (2002) provide an
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accessible treatment to imputation and multiple imputation methods,

with lots of references to work by Rubin and coauthors.

∙ Imputing missing values cannot always be valid, of course. Most

methods depend on a missing at random (MAR) assumption. When

data are missing on only one variable – say, the response variable, y –

MAR is essentially the same as Ps  1|y,x  Ps  1|x. The

assumption missing completely at random (MCAR) is when s is

independent of w  x,y.

∙MAR can be defined for general missing data patterns. Let

wi  wi1,wi2 be a random draw from the population, where data can

be missing on either variable. Let ri  ri1, ri2 be the “retention”
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indicators for wi1 and wi2, so rig  1 implies wig is observed. The

MCAR assumption is that ri is independent of wi. The MAR

assumption is that Pri1  0, ri2  0|wi  Pri1  0, ri2  0 ≡ 00,

Pri1  1, ri2  0|wi1, and Pri1  0, ri2  1|wi2. Even with just two

variables, the restrictions imposed by MAR are not especially

appealing, unless, of course, we have good reason to just assume

MCAR.

∙MAR is more natural with monotone missing data problems; we just

saw the case of attrition. If we order the variables so that if wih is

observed the so is wig, g  h. Write fw1, . . . ,wG  fwG|wG−1, . . . ,w1

fwG−1|wG−1, . . . ,w1fw2|w1fw1. Given parametric models, we
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can write partial log likelihood as

∑
g1

G

rig log fwig|wi,g−1, . . . ,wi1,,     (40)

where we use rig  rigri,g−1ri2. Under MAR,

Erig|wig, . . . ,wi1  Erig|wi,g−1, . . . ,wi1.     (41)

As we showed in the attrition case, partial MLE based on (40) is

consistent and N -asymptotically normal in general. This is the basis

for filling in data in monotonic MAR schemes.

∙ Simple example of imputation. Let y  Ey, but data are missing

on some yi. Unless Psi  1|yi  Psi  1, the complete-case

average is not consistent for y. Suppose that the selection is ignorable
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conditional on x:

Ey|x, s  Ey|x  mx,,     (42)

where mx, is a parametric function. From Section 1, NLS using the

selected sample is consistent for . Because we observe xi for all i, we

can obtained fitted values, mxi, ̂, for any unit it the sample. Let

ŷi  siyi  1 − simxi, ̂ be the imputed data. Then an imputation

estimator of y is

̂y  N−1∑
i1

N

siyi  1 − simxi, ̂.     (43)

From plim(̂y  Esiyi  1 − simxi, we can show consistency of

̂y because, by (42) and iterated expectations,
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Esiyi  1 − simxi,  Emxi,  y.     (44)

∙ Danger in using imputation methods: we might be tempted to treat

the imputed data as real random draws.

Generally leads to incorrect inference because of inconsistent variance

estimation. (In linear regression, easy to see that estimated variance is

too small.)

∙ Little and Rubin (2002) call (43) the method of “conditional means.”

In their Table Table 4.1 the document the downward bias in variance

estiimates.

∙ Instead, LR propose adding a random draw to mxi, ̂ to impute a

value – assuming, of course, that we can estimate Dy|x. If we assume
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that Dui|xi  Normal0,u2, draw u i from a Normal0, ̂u2,

distribution, where ̂u2 is estimated using the complete case nonlinear

regression residuals, and then use mxi, ̂  u i for the missing data.

Called the “conditional draw” method of imputation, which is a special

case of stochastic imputation.

∙ Generally difficult to quantity the uncertainty from single-imputation

methods, where one imputed values is obtained for each missing

variable. One possibility is to bootstrap the entire estimation/imputation

steps. Can be computationally intensive because imputation needs to be

done for each bootstrap sample.

∙Multiple imputation is an alternative. Its theoretical justification is
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Bayesian, based on obtaining the posterior distribution – in particular,

mean and variance – of the parameters conditional on the observed

data. For general missing data patterns, the computation required to

impute missing values is quite complicated, and involves simulation

methods of estimation. LR and Cameron and Trivedi (2005) provide

discussion.

∙ General idea: rather than just impute one set of missing values to

create one “complete” data set, create several imputed data sets. (Often

the number is fairly small, such as five or so.) Estimate the parameters

of interest using each imputed data set, and then use an averaging to

obtain a final parameter estimate and sampling error.
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Let Wmis denote the matrix of missing data and Wobs the matrix of

observations. Assume that MAR holds. MAR used to estimate

E|Wobs, the posterier mean of  given Wobs. But by iterated

expectations,

E|Wobs  EE|Wobs,Wmis|Wobs.     (45)

If ̂d  E|Wobs,Wmis
d  for imputed data set d, then approximate

E|Wobs as

̄  D−1∑
d1

D

̂d,     (46)

Further, we can obtain a “sampling” variance by estimating

Var|Wobs using
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Var|Wobs  EVar|Wobs,Wmis|Wobs

 VarE|Wobs,Wmis|Wobs,
    (47)

which suggests

Var|Wobs  D−1∑
d1

D

V̂d

 D − 1−1∑
d1

D

̂d − ̄̂d − ̄
′

≡ V̄  B,

    (48)

where V̄ is the average of the variance estimates across imputed

samples and B is the between-imputation variance. For small number of

imputations, a correction is usually made, namely, V̄  1  D−1B.
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assuming that one trusts the MAR assumption and the underlying

distributions used to draw the imputed values, inference with multiple

imputations is fairly straightforward. D need not be very large so

estimation using nonlinear models is relatively easy, given the imputed

data.

∙ Like weighting methods, imputation methods shortcomings when

applied to estimation of models with missing conditioning variables. If

x  x1,x2, we are interested in Dy|x, data are missing on y and x2 –

say, for the same units – and selection is a function of x2. Using the

complete cases will be consistent. Imputation methods would not be, as

they require Ds|y,x1,x2  Ds|x1.
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4. Heckman-Type Selection Corrections

∙ The lecture notes discuss advantages of applying IV methods when

data are missing on explanatory variables in addition to the response

variable. Briefly, a variable that is exogenous in the population model

need not be in the selected subpopulation. (Example: wage-benefits

tradeoff.)

y1  z11  1y2  u1

y2  z2  v2

y3  1z3  v3  0.

    (49)
    (50)
    (51)

Assume (a) z,y3 is always observed, y1,y2 observed when y3  1;

(b) Eu1|z,v3  1v3; (c) v3|z ~Normal0, 1; (d) Ez′v2  0 and
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22 ≠ 0, then we can write

y1  z11  1y2  gz,y3  e1     (52)

where e1  u1 − gz,y3  u1 − Eu1|z,y3. Selection is exogenous in

(52) because Ee1|z,y3  0. Because y2 is not exogenous, we estimate

(52) by IV, using the selected sample, with IVs z,z3 because

gz, 1  z3. The two-step estimator is (i) Probit of y3 on z to

(using all observations) to get ̂i3 ≡ zi̂3; (ii) IV (2SLS if

overidentifying restrictions) of yi1 on zi1,yi2, ̂i3 using instruments

zi, ̂i3.

∙ If y2 is always observed, tempting to obtain the fitted values ŷi2 from

the reduced form yi2 on zi, and then use OLS of yi1 on zi1,ŷi2, ̂i3 in the
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second stage. But this effectively puts 1v2 in the error term, so we

would need u1  2v2 to be normally (or something similar). Rules out

discrete y2. The procedure just outlined uses the linear projection

y2  z2  2z3  r3 in the selected population, and does not care

whether this is a conditional expectation.

∙ Should have at least two elements in z not in z1: one to exogenously

vary y2, one to exogenously vary selection, y3.

∙ If an explanatory variable is not always observed, ideally can find an

IV for it and treat it as endogenous even if it is exogenous in the

population. Generally, the usual Heckman approach (like IPW and

imputation) is hard to justify in the model Ey|x  Ey|x1 if x1 is not
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always observed. The first-step would be estimation of Ps  1x2

where x2 is always observed. But then we would be assuming

Ps  1|x  Ps  1|x2, effectively an exclusion restriction on a

reduced form.
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