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5. Quantile Methods for “Censored” Data

1. Reminders About Means, Medians, and Quantiles

∙ Consider the standard linear model in a population, with intercept 

and K  1 slopes :

y    x  u.     (1)

Assume Eu2  , so that the distribution of u is not too spread out.

Given a large random sample, when should we expect ordinary least

squares, which solves
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min
a,b
∑
i1

N

yi − a − xib2,     (2)

and least absolute deviations (LAD), which solves

min
a,b
∑
i1

N

|yi − a − xib|,     (3)

to provide similar parameter estimates? There are two important cases.

If

Du|x is symmetric about zero     (4)

then OLS and LAD both consistently estimate  and . If

u is independent of x with Eu  0,     (5)
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where Eu  0 is the normalization that identifies , then OLS and

LAD both consistently estimate the slopes, . If u has an asymmetric

distribution, then Medu ≡  ≠ 0, and ̂LAD converges to   

because Medy|x    x  Medu|x    x  .

∙ In many applications, neither (4) nor (5) is likely to be true. For

example, y may be a measure of wealth, in which case the error

distribution is probably asymmetric and Varu|x not constant.

∙ Therefore, it is important to remember that if Du|x is asymmetric

and changes with x, then we should not expect OLS and LAD to

deliver similar estimates of , even for “thin-tailed” distributions. It is

important to separate discussions of resiliency to outliers from the
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different quantities identified by least squares (Ey|x) and least

absolution deviations Medy|x.

∙ Of course, LAD is much more resilient to changes in extreme values

because, as a measure of central tendency, the median is much less

sensitive than the mean to changes in extreme values. But it does not

follow that a large difference in OLS and LAD estimates means

something is “wrong” with OLS.

∙ Big advantage for median over mean: the median passes through

monotonic functions. For example, if logy    x  u and

Medu|x  0, then Medy|x  expMedlogy|x  exp  x.

By contrast, we cannot generally find Ey|x  exp  xEexpu|x.
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∙ But the expectation operator has useful properties that the median

does not: linearity and the law of iterated expectations. Suppose we

begin with a random coefficient model

yi  ai  xibi,     (6)

If ai,bi is independent of xi, then

Eyi|xi  Eai|xi  xiEbi|xi ≡   xi,     (7)

where   Eai and   Ebi. So OLS consistently estimates  and

. By contrast, no way to derive Medyi|xi without imposing more

restrictions.

∙What can we add so that LAD estimates something of interest in (7)?

If ui is a vector, then its distribution conditional on xi is centrally
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symmetric if Dui|xi  D−ui|xi, which implies that, if gi is any

vector function of xi, Dgi′ui|xi has a univariate distribution that is

symmetric about zero. This implies Eui|xi  0.

∙ Apply central symmetry to random coefficient model by writing

ci  ai,bi with   Eci, and let di  ci − . Then

yi    xi  ai −   xibi −      (8)

with gi  1,xi. If ci given xi is centrally symmetric about , then

Medgi′ci − |xi  0, and LAD applied to the usual model

yi    xi  ui consistently estimates  and .

∙ For 0    1, q is the th quantile of yi if Pyi ≤ q ≥  and

Pyi ≥ q ≥ 1 − .
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∙ Usually, we are interested in how covariates affect quantiles (of

which the median is the special case with   1/2. Under linearity,

Quantyi|xi    xi.     (9)

Under (9), consistent estimators of  and  are obtained by

minimizing the “check” function:

min
∈,∈K

∑
i1

N

cyi −  − xi,     (10)

where cu  1u ≥ 0  1 − 1u  0|u|   − 1u  0u and

1 is the “indicator function.” Consistency is relatively easy to

establish because , are known to minimize

Ecyi −  − xi (for example, Manski (1988)). Asymptotic
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normality is more difficult because any sensible definition of the

Hessian of the objective function, away from the nondifferentiable

kink, is identically zero. But it has been worked out under a variety of

conditions; see Koenker (2005) for a recent treatment.

2. Some Useful Asymptotic Results

What Happens if the Quantile Function is Misspecified?

∙ Property of OLS: if ∗ and ∗ are the plims from the OLS regression

yi on 1,xi then these provide the smallest mean squared error

approximation to Ey|x  x in that ∗,∗ solve

min
,
Ex −  − x2.     (11)

Under restrictive assumptions on distribution of x, j∗ can be equal to or
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proportionl to average partial effects.

∙ Linear quantile formulation has been viewed by several authors as an

approximation (Buchinsky (1991), Chamberlain (1991), Abadie,

Angrist, Imbens (2002)). Recently, Angrist, Chernozhukov, and

Fernandez-Val (2006) characterized the probability limit of the quantile

regression estimator. Absorb the intercept into x and let  be the

solution to the population quantile regression problem. ACF show that

 solves

min

Ewx,qx − x2,     (12)

where the weight function wx, is
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wx,  
0

1
1 − ufy|xux  1 − uqx|xdu.     (13)

In other words,  is the best weighted mean square approximation to

the true quantile function, where the weights depend on average of the

conditional density of yi over a line from x, to the true quantile

function, qx.

Computing Standard Errors

∙ For given , write

yi  xi  ui, Quantui|xi  0,     (14)

and let ̂ be the quantile estimator. Define quantile residuals

ûi  yi − xi̂. Under weak conditions (see, for example, Koenker
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(2005)), N ̂ −  is asymptotically normal with asymptotic variance

A−1BA−1, where

A ≡ Efu0|xixi′xi     (15)

and

B ≡ 1 − Exi′xi.     (16)

When we assume the quantile function is actually linear, a consistent

estimator of B is

B̂  1 −  N−1∑
i1

N

xi′xi .     (17)

Generally, a consistent estimator of A is (Powell (1986, 1991))
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Â  2NhN−1∑
i1

N

1|ûi|≤ hNxi′xi,     (18)

where hN  0 is a nonrandom sequence shrinking to zero as N → 

with N hN → . For example, hN  aN−1/3 for any a  0. Might use a

smoothed version so that all residuals contribute.

∙Works for reasons similar to heteroskedasticity-robust standard

errors.

∙ If ui and xi are independent,

Avar N ̂ −   1 − 
fu02 Exi

′xi−1,     (19)

and Avar̂ is estimated as
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Avar̂  1 − 
f̂u02

N−1∑
i1

N

xi′xi
−1

,     (20)

where, say, f̂u0 is the histogram estimator

f̂u0  2NhN−1∑
i1

N

1|ûi|≤ hN.     (21)

Estimate in (20) is commonly reported (by, say, Stata).

∙ If the quantile function is misspecified, even the “robust” form of the

variance matrix, based on the estimate in (20), is not valid. In the

generalized linear models literature, the distinction is sometimes made

between a “fully robust” variance estimator and a “semi-robust”

14



variance estimator. If mean is correctly specified and estimator allows

unspecified variance, it is semi-robust. If the mean is allowed to be

misspecified, fully robust.

∙ For quantile regression, a fully robust variance requires a different

estimator of B. Kim and White (2002) and Angrist, Chernozhukov, and

Fernández-Val (2006) show

B̂  N−1∑
i1

N

 − 1ûi  02xi′xi     (22)

is generally consistent, and then Avar̂  Â−1B̂Â−1 with Â given by

(18).

∙ Hahn (1995, 1997) shows that the nonparametric bootstrap and the
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Bayesian bootstrap generally provide consistent estimates of the fully

robust variance without claims about the conditional quantile being

correct. Bootstrap does not provide “asymptotic refinements” for

testing and confidence intervals.

∙ ACF provide the covariance function for the process

̂ :  ≤  ≤ 1 −  for some   0, which can be used to test

hypotheses jointly across multiple quantiles (including all quantiles at

once).

∙ Example using Abadie (2003). These are nonrobust standard errors.

nettfa is net total financial assets.
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Dependent Variable: nettfa

Explanatory Variable Mean (OLS) .25 Quantile Median (LAD) .75 Quantile

inc . 783 . 0713 . 324 . 798

. 104 . 0072 . 012 . 025

age −1. 568 . 0336 −. 244 −1. 386

1. 076 . 0955 . 146 . 287

age2 . 0284 . 0004 . 0048 . 0242

. 0138 . 0011 . 0017 . 0034

e401k 6. 837 1. 281 2. 598 4. 460

2. 173 . 263 . 404 . 801

N 2, 017 2, 017 2, 017 2, 017
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3. Quantile Regression with Endogenous Explanatory Variables

∙ Suppose

y1  z11  1y2  u1,     (23)

where z is exogenous and y2 is endogenous – whatever that means in

the context of quantile regression.

∙ First, LAD. Amemiya’s (1982) two-stage LAD estimator adds a

reduced form for y2, say

y2  z2  v2.     (24)

First step applies OLS or LAD to (24), and gets fitted values,

yi2  zi̂2. These are inserted for yi2 to give LAD of yi1 on zi1,ŷi2. The

2SLAD estimator relies on symmetry of the composite error 1v2  u1
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given z.

∙ If Du1,v2|z is centrally symmetric, can use a control function

approach. Write

u1  1v2  e1,     (25)

where e1 given z would have a symmetric distribution. Get LAD

residuals v̂i2  yi2 − zi̂2 and do LAD of yi1 on zi1,yi2, v̂i2. Use t test on

v̂i2 to test null that y2 is exogenous.

∙ Interpretation of LAD in context of omitted variables is difficult

unless lots of symmetry assumed.

∙ Abadie (2003) and Abadie, Angrist, and Imbens (2002) define and

estimate policy parameters with a binary endogenous treatment, say D,
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and binary instrumental variable, say Z. The potential outcomes are Yd,

d  0, 1 – that is, without treatment and with treatment, respectively.

The counterfactuals for treatment are Dz, z  0, 1. Observed are

X,Z,D  1 − ZD0  ZD1, and Y  1 − DY0  DY1. AAI study

treatment effects for compliers, that is, the (unobserved) subpopulation

with D1  D0. The assumptions are

Y1,Y0,D1,D0 independent of Z conditional on X     (26)

0  PZ  1|X  1     (27)

PD1  1|X ≠ PD0  1|X     (28)

PD1 ≥ D0|X  1.     (29)
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Under these assumptions, treatment is unconfounded for compliers:

DY0,Y1|D,X,D1  D0  DY0,Y1|X,D1  D0     (30)

and so treatment effects can be defined based on DY|X,D,D1  D0,

where Y is the observed outcome. AAI focus on quantile treatment

effects (Abadie looks at other distributional features):

QuantY|X,D,D1  D0  D  X.     (31)

(This results in estimated differences for the quantiles of Y1 and Y0, not

the quantile of the difference Y1 − Y0. 

∙ If the dummy variable C  1D1  D0 could be observed, problem

would be straightforward. Would like to use linear quantile estimation

for the subpopulation C  1 because the parameters solve
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min
,
EC  gY,X,D,,     (32)

where gY,X,D,,  cY − D − X is the check function for a

linear quantile estimation. Instead, can solve

min
,
EU  gY,X,D,,,     (33)

where U  Y,X,D and U  PC  1|U. AAI show

vU  1 − D1 − vU1 − X − 1 − DvU
X ,     (34)

where vU  PZ  1|U, and X  PZ  1|X, which can both be

estimated using observed data.

∙ Two-step estimator solves
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min

∑
i1

N

1̂vUi ≥ 0̂vUicYi − Wi.     (35)

where Wi  Di,Xi and  contains  and . The indicator function

1̂vUi ≥ 0 ensures that only observations with nonnegative weights

are used. Can use flexible parametric models (series) estimators for

v̂u and ̂x.

∙ Chernozhukov and Hansen (2005, 2006) consider identification and

estimation of QTEs in a model with endogenous treatment. Let

qd,x, denote the th quantile function for treatment level D  d and

covariates x. In the binary case, CH define the QTE as

QTEx  q1,x, − q0,x,.     (36)
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∙ CH use the representation that Yd, conditional on X  x, can be

expressed as

Yd  qd,x,Ud     (37)

where

Ud|Z ~Uniform0, 1,     (38)

and Z is the instrumental variable for treatment assignment, D. Key

assumptions are that qd,x,u is strictly increasing in u and a “rank

invariance” condition, whose simplest form is conditional on X  x and

Z  z, Ud does not depend on d. CH show that, with the observed Y

defined as Y  qD,X,UD,
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PY ≤ qD,X,|X,Z  PY  qD,X,|X,Z  .     (39)

If we could take Z  D, (39) would define the quantile QuantY|D,X.

Generally, it defines conditional moment conditions

E1Y ≤ qD,X, − |X,Z  0,     (40)

which is analogous to conditional moment conditions in models with

additive errors.

∙ Chernozhukov and Hansen (2006) assume a linear functional form

and obtain the quantile regression instrumental variables estimator.

4. Quantile Regression for Panel Data

∙Without unobserved effects, easy to use quantile regression methods

on panel data:
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Quantyit|xit  xit, t  1, . . . ,T.     (41)

Use pooled quantile regression. But need to generally account for serial

correlation in the “scores,

s it  −xit
′ 1yit − xit ≥ 0 − 1 − 1yit − xit  0.

Use

B̂  N−1∑
i1

N

∑
t1

T

∑
r1

T

s it̂s ir̂
′     (42)

and then

Â  2NhN−1∑
i1

N

∑
t1

T

1|ûit|≤ hNxit′ xit.     (43)
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∙ Explicitly allowing unobserved effects is harder.

Quantyit|xi,ci  Quantyit|xit,ci  xit  ci.     (44)

∙ “Fixed effects” approach, where do not restrict Dci|xi, is attractive.

From Honoré (1992) applied to the uncensored case, LAD on the first

differences is consistent when uit : t  1, . . . ,T is an iid. sequence

conditional on xi,ci, even if the common distribution is not

symmetric. But this is a fairly strong assumption. When T  2,

applying LAD on the first differences is equivalent to estimating the ci
along with . Generally, an incidental parameters problem with small

T.

∙ Alternative suggested by Abrevaya and Dahl (2006) for T  2. In
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Chamberlain’s correlated random effects linear model,

Eyt|x1,x2  t  xt  x11  x22, t  1,     (45)

  ∂Ey1|x
∂x1

− ∂Ey2|x
∂x1

.     (46)

Abrevaya and Dahl suggest modeling Quantyt|x1,x2 as in (46) and

then defining the partial effect as

 
∂Quanty1|x

∂x1
−
∂Quanty2|x

∂x1
.     (47)

∙ Generally, correlated random effects approaches are hampered

because finding quantiles of sums of random variables is difficult.

Suppose we write ci    x̄i  ai and then

28



yit    xit  x̄i  ai  uit.     (48)

Generally, vit  ai  uit will not have zero conditional quantile. Could

just estimate (48) by pooled quantile regression for different quantiles

and use the ACF results on approximating quantiles.

∙ A little more flexibility if we start with median,

yit  xit  ci  uit, Meduit|xi,ci  0,     (49)

and make symmetry assumptions. If Dui|xi  D−ui|xi then all

linear combinations of the errors have a symmetric distribution, and so

we can apply LAD to the time-demeaned equation ÿit  ẍit  üit,

being sure to obtain fully robust standard errors for pooled LAD.

∙ If we impose the Chamberlain-Mundlak device as in (48), we can get
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by with central symmetry of Dai,uit|xi has a symmetric distribution

around zero then Dai  uit|xi is symmetric about zero, and, if this

holds for each t, pooled LAD of yit on 1,xit, and x̄i consistently

estimates t,,. (If we use pooled OLS with x̄i included, we obtain

the FE estimate.) Should use robust inference.
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5. Quantile Methods for “Censored” Data

∙ Censored LAD applicable to data censoring and and corner solutions.

Very useful for true data censoring, where parameters of underlying

linear model are of interest. wi is the response variable (say, wealth or

log of a duration) following

wi  xi  ui,     (50)

but it is top coded or right censored at ri, then we can estimate  under

the assumption

Medui|xi, ri  0     (51)

because Medyi|xi, ri  minxi, ri where yi  minyi∗, ri. Leads to

Powell’s (1986) CLAD estimator. (Need to always observe ri; see
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Honoré, Khan, and Powell (2002) to relax.)

∙ Less clear that CLAD is “better” than parametric models for corner

solution responses. CLAD identifies a single feature of Dy|x, namely,

Medy|x. Models such as Tobit assume more but deliver more. Not just

enough to estimate parameters. Common model for corner at zero:

y  max0,x  u, Medu|x  0.     (52)

j measures the partial effects on Medy|x  max0,x once

Medy|x  0.

∙ A model no more or less restrictive than (52) is

y  a  expx, Ea|x  1,     (53)

in which case Ey|x  expx is identified. Allows for corner because
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Pa  0|x  0 is allowed.

∙ How to interpret panel data applications of CLAD for corner

solutions?

Medyit|xi,ci  max0,xit  ci.     (54)

Honoré (1992), Honoré and Hu (2004) show how to estimate  under

exchangeability assumptions on the idiosyncratic errors in the latent

variable model. The partial effect of xtj on Medyit|xit  xt,ci  c is

tjxt,c  1xt  c  0j.     (55)

What values should we insert for c? We need to know something about

Dci. The average of (55) across the distribution of unobserved

heterogeneity would be average partial effects (on the median). Again,
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we need to identify Dci. The j give us the sign and relative effects of

the APEs. If ci has a Normalc,c2 distribution, then it is easy to

show Ecitjxt,ci  c − xt/cj.
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