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1. Introduction

Traditionally in constructing statistical or econometric models

researchers look for models that are (point-)identified: given

a large (infinite) data set, one can infer without uncertainty

what the values are of the objects of interest.

It would appear that a model where we cannot learn the pa-

rameter values even in infinitely large samples would not be

very useful.

However, it turns out that even in cases where we cannot learn

the value of the estimand exactly in large samples, in many

cases we can still learn a fair amount, even in finite samples. A

research agenda initiated by Manski has taken this perspective.
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Here we discuss a number of examples to show how this ap-

proach can lead to interesting answers in settings where previ-

ously were viewed as intractable.

We also discuss some results on inference.

1. Are we interested in confidence sets for parameters or for

identified sets?

2. Concern about uniformity of inferences (confidence cant

be better in partially identified case than in point-identified

case).
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2. I: Missing Data

If Di = 1, we observe Yi, and if Di = 0 we do not observe Yi.
We always observe the missing data indicator Di. We assume
the quantity of interest is the population mean θ = E[Yi].

In large samples we can learn p = E[Di] and μ1 = E[Yi|Di = 1],
but nothing about μ0 = E[Yi|Di = 0]. We can write:

θ = p · μ1 + (1 − p) · μ0.

Since even in large samples we learn nothing about μ0, it follows
that without additional information there is no limit on the
range of possible values for θ.

Even if p is very close to 1, the small probability that Di = 0
combined with the possibility that μ0 is very large or very small
allows for a wide range of values for θ.
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Now suppose we know that the variable of interest is binary:

Yi ∈ {0,1}. Then natural (not data-informed) lower and upper

bounds for μ0 are 0 and 1 respectively. This implies bounds on

θ:

θ ∈ [θLB, θUB] = [p · μ1, p · μ1 + (1 − p)] .

These bounds are sharp, in the sense that without additional

information we can not improve on them.

Formally, for all values θ in [θLB, θUB], we can find a joint distri-

bution of (Yi,Wi) that is consistent with the joint distribution

of the observed data and with θ.
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We can also obtain informative bounds if we modify the object

of interest a little bit.

Suppose we are interested in the median of Yi, θ0.5 = med(Yi).

Define qτ(Yi) to be the τ quantile of the conditional distribution

of Yi given Di = 1. Then the median cannot be larger than

q1/(2p)(Yi) because even if all the missing values were large, we

know that at least p · (1/(2p)) = 1/2 of the units have a value

less than or equal to q1/(2p)(Yi).

Then, if p > 1/2, we can infer that the median must satisfy

θ0.5 ∈ [θLB, θUB] =
[
q(2p−1)/(2p)(Yi), q1/(2p)(Yi)

]
,

and we end up with a well defined, and, depending on the data,

more or less informative identified interval for the median.
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If fewer than 50% of the values are observed, or p < 1/2,

then we cannot learn anything about the median of Yi without

additional information (for example, a bound on the values of

Yi), and the interval is (−∞,∞).

More generally, we can obtain bounds on the τ quantile of the

distribution of Yi, equal to

θτ ∈ [θLB, θUB] =
[
q(τ−(1−p))/p(Yi|Di = 1), qτ/p(Yi|Di = 1)

]
.

which is bounded if the probability of Yi being missing is less

than min(τ,1 − τ).
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3. Example II: Returns to Schooling

Manski-Pepper are interested in estimating returns to school-
ing. They start with an individual level response function Yi(w).

Δ(s, t) = E[Yi(t)− Yi(s)],

is the difference in average outcomes (log earnings) given t
rather than s years of schooling. Values of Δ(s, t) are the
object of interest.

Wi is the actual years of school, and Yi = Yi(Wi) be the actual
log earnings.

If one makes an unconfoundedness/exogeneity assumption that

Yi(w) ⊥⊥ Wi | Xi,

for some set of covariates, one can estimate Δ(s, t) consistently
given some support conditions. MP relax this assumption.
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Alternative Assumptions considered by MP

Increasing education does not lower earnings:

Assumption 1 (Monotone Treatment Response)

If w′ ≥ w, then Yi(w
′) ≥ Yi(w).

On average, individuals who choose higher levels of education

would have higher earnings at each level of education than

individuals who choose lower levels of education.

Assumption 2 (Monotone Treatment Selection)

If w′′ ≥ w′, then for all w, E[Yi(w)|Wi = w′′] ≥ E[Yi(w)|Wi = w′].
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Under these two assumptions, bound on E[Yi(w)] and Δ(s, t):

E[Yi|Wi = w] · Pr(Wi ≥ w) +
∑
v<w

E[Yi|Wi = v] · Pr(Wi = v)

≤ E[Yi(w)] ≤

E[Yi|Wi = w] · Pr(Wi ≤ w) +
∑
v>w

E[Yi|Wi = v] ·Pr(Wi = v).

Using NLS data MP estimate the upper bound on the the
returns to four years of college, Δ(12,16) to be 0.397.

Translated into average yearly returns this gives us 0.099,
which is in fact lower than some estimates that have been
reported in the literature.

This analysis suggests that the upper bound is in this case
reasonably informative, given a remarkably weaker set of as-
sumptions.
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4. Example III: Initial Conditions Problems in Panel Data
(Honoré and Tamer)

Yit = 1{X′
itβ + Yit−1 · γ + αi + εit ≥ 0},

with the εit independent N(0,1) over time and individuals. Fo-
cus on γ.

Suppose we also postulate a parametric model for the random
effects αi:

α|Xi1, . . . , XiT ∼ G(α|θ)

Then the model is almost complete.

All that is missing is:

p(Yi1|αi,Xi1, . . . , XiT ).
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HT assume a discrete distribution for α, with a finite and
known set of support points. They fix the support to be
−3,−2.8, . . . ,2.8,3, with unknown probabilities.

In the case with T = 3 they find that the range of values for
γ consistent with the data generating process (the identified
set) is very narrow.

If γ is in fact equal to zero, the width of the set is zero.
If the true value is γ = 1, then the width of the interval is
approximately 0.1. (It is largest for γ close to, but not equal
to, -1.) See Figure 1, taken from HT.

The HT analysis shows nicely the power of the partial identifi-
cation approach: A problem that had been viewed as essentially
intractable, with many non-identification results, was shown to
admit potentially precise inferences. Point identification is not
a big issue here.
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5. Example IV: Auction Data

Haile and Tamer study English or oral ascending bid auctions.

In such auctions bidders offer increasingly higher prices until

only one bidder remains. HT focus on a symmetric independent

private values model. In auction t, bidder i has a value νit,

drawn independently from the value for bidder j, with cdf Fν(v)

HT are interested in the value distribution Fν(v). This is as-

sumed to be the same in each auction (after adjusting for

observable auction characteristics).

One can imagine observing exactly when each bidder leaves the

auction, thus directly observing their valuations. This is not

what is typically observed. For each bidder we do not know

at any point in time whether they are still participating unless

they subsequently make a higher bid.
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Haile-Tamer Assumptions

Assumption 3 No bidder ever bids more than their valuation

Assumption 4 No bidder will walk away and let another bidder

win the auction if the winning bid is lower than their own

valuation
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Upper Bound on Value Distribution

Let the highest bid for participant i in auction t be bit. We

ignore variation in number of bidders per auction, and presence

of covariates.

Let Fb(b) = Pr(bit ≤ b) be the distribution function of the bids

(ignoring variation in the number of bidders by auction). This

distribution can be estimated because the bids are observed.

Because no bidder ever bids more than their value, it follows

that bit ≤ νit. Hence, without additional assumptions,

Fν(v) ≤ Fb(v), for all v.
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Lower Bound on Value Distribution

The second highest of the values among the n participants

in auction t must be less than or equal to the winning bid.

This follows from the assumption that no participant will let

someone else win with a bid below their valuation.

Let Fν,m:n(v) denote the mth order statistic in a random sample

of size n from the value distribution, and let FB,n:n(b) denote

the distribution of the winning bid in auctions with n partici-

pants. Then

FB,n:n(v) ≤ Fν,n−1:n(v).

The distribution of the any order statistic is monotonically re-

lated to the distribution of the parent distribution, and so a

lower bound on Fν,n−1:n(v) implies a lower bound on Fν(v).
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6. Example V: Entry Models (Cilberto & Tamer)

Suppose two firms, A and B, contest a set of markets. In

market m, m = 1, . . . ,M , the profits for firms A and B are

πAm = αA + δA · dBm + εAm, πBm = αB + δB · dAm + εBm.

where dFm = 1 if firm F is present in market m, for F ∈ {A,B},
and zero otherwise.

Decisions assuming complete information satisfy Nash equilib-

rium condition

dAm = 1{πAm ≥ 0}, dBm = 1{πBm ≥ 0}.
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Incomplete Model

For pairs of values (εAm, εBm) such that

−αA < εA ≤ −αA − δA, −αB < εB ≤ −αB − δB,

both (dA, dB) = (0,1) and (dA, dB) = (1,0) satisfy the profit

maximization condition.

In the terminology of this literature, the model is incomplete.

It does not specify the outcomes given the inputs. Missing is

an equilibrium selection mechanism, which is typically difficult

to justify.

Figure 1, adapted from CM, shows the different regions in the

(εAm, εBm) space.
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Implication: Inequality Conditions

The implication of this is that the probability of the outcome
(dAm, dBm) = (0,1) cannot be written as a function of the
parameters of the model, θ = (αA, δA, αB, δB), even given dis-
tributional assumptions on (εAm, εBm).

Instead the model implies a lower and upper bound on this
probability:

HL,01(θ) ≤ Pr ((dAm, dBm) = (0,1)) ≤ HU,01(θ).

Thus in general we can write the information about the pa-
rameters in large samples as

⎛
⎜⎜⎜⎜⎝
HL,00(θ)
HL,01(θ)
HL,10(θ)
HL,11(θ)

⎞
⎟⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎝

Pr ((dAm, dBm) = (0,0))
Pr ((dAm, dBm) = (0,1))
Pr ((dAm, dBm) = (1,0))
Pr ((dAm, dBm) = (1,1))

⎞
⎟⎟⎟⎠ ≤

⎛
⎜⎜⎜⎜⎝
HU,00(θ)
HU,01(θ)
HU,11(θ)
HU,11(θ)

⎞
⎟⎟⎟⎟⎠ .
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7.A Estimation

Chernozhukov, Hong, and Tamer study Generalized Inequality

Restriction (GIR) setting:

E[ψ(Z, θ)] ≥ 0,

where ψ(z, θ) is known. Fits CT entry example

Define for a vector x the vector (x)+ to be the component-

wise non-negative part, and (x)− to be the component-wise

non-positive part, so that for all x, x = (x)− + (x)+.
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For a given M×M non-negative definite weight matrix W , CHT

consider the population objective function

Q(θ) = E[ψ(Z, θ)]′−WE[ψ(Z, θ)]−.

For all θ ∈ ΘI, we have Q(θ) = 0, and for θ /∈ ΘI, we have

Q(θ) > 0

The sample equivalent to this population objective function is

QN(θ) =

⎛
⎝ 1

N

N∑
i=1

ψ(Zi, θ)

⎞
⎠′

−
W

⎛
⎝ 1

N

N∑
i=1

ψ(Zi, θ)

⎞
⎠
−
.
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We cannot simply estimate the identified set as

Θ̃I = {θ ∈ Θ |QN(θ) = 0} ,

The reason is that even for θ in the identified set QN(θ) may
be positive with high probability, and Θ̃I can be empty when
ΘI is not, even in large samples.

A simple way to see that is to consider the standard GMM
case with equalities and over-identification. If E[ψ(Z, θ)] = 0,
the objective function will not be zero in finite samples in the
case with over-identification.

This is the reason CHT suggest estimating the set ΘI as

Θ̂I = {θ ∈ Θ |QN(θ) ≤ aN } ,

where aN → 0 at the appropriate rate.
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7.B Inference

Fast growing literature, Beresteanu and Molinari (2006), Cher-
nozhukov, Hong, and Tamer (2007), Galichon and Henry (2006),
Imbens and Manski (2004), Rosen (2006), and Romano and
Shaikh (2007ab).

First issue: do we want a confidence set that includes each
element of the identified set with fixed probability, or the entire
identified set with that probability. First

inf
θ∈[θLB,θUB]

Pr
(
θ ∈ CIθα

)
≥ α.

Second

Pr
(
[θLB, θUB] ⊂ CI[θLB,θUB]

α

)
≥ α.

The second requirement is stronger than the first, and so gen-
erally CIθα ⊂ CI[θLB,θUB]

α .
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7.B.I Well behaved Estimators for Bounds

Missing data example, (p, prob of missing data, known). Iden-

tified set:

ΘI = [p · μ1, p · μ1 + (1 − p)].

Standard interval for μ1:

CIμ1
α =

[
Y − 1.96 · σ/

√
N1, Y + 1.96 · σ/

√
N1

]
.

Three ways to construct 95% confidence intervals for θ.
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CIθα =
[
p ·
(
Y − 1.96 · σ/

√
N1

)
, p ·

(
Y + 1.96 · σ/

√
N1

)
+ 1 − p

]
.

This is conservative. For each θ in the interior of ΘI, the cov
rate is 1. For θ ∈ {θLB, θUB}, if p < 1, the cov rate is 0.975.

CIθα =
[
p ·
(
Y − 1.645 · σ/

√
N1

)
, p ·

(
Y + 1.645 · σ/

√
N1

)
+ 1 − p

]
.

This has the problem that if p = 1 (when θ is point-identified),
the coverage is only 0.90. Imbens and Manski (2004) suggest
modifying the confidence interval to

CIθα =
[
p ·
(
Y − CN · σ/

√
N1

)
, p ·

(
Y + CN · σ/

√
N1

)
+ 1 − p

]
,

where the critical value CN satisfies

Φ

(
CN +

√
N · 1 − p

σ/
√
p

)
− Φ(−CN) = 0.95

This confidence interval has asymptotic coverage 0.95, uni-
formly over p, for p ∈ [p0,1].
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7.B.II Irregular Estimators for Bounds

Simple example of Generalized Inequality Restrictions (GIR)

set up.

E[X] ≥ θ, and E[Y ] ≥ θ.

The parameter space is Θ = [0,∞). Let μX = E[X], and

μY = E[Y ]. We have a random sample of size N of the pairs

(X,Y ). The identified set is

ΘI = [0,min(μX, μY )].
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A naive 95% confidence interval would be

Cθα = [0,min(X,Y ) + 1.645 · σ/N ].

This confidence interval essentially ignores the moment in-

equality that is not binding in the sample. It has pointwise

asymptotic 95% coverage for all values of μX, μY , as long as

min(μX, μY ) > 0, and μX �= μY .

The first condition (min(μX, μY ) > 0) is the same as the con-

dition in the Imbens-Manski example. It can be dealt with in

the same way by adjusting the critical value slightly based on

an initial estimate of the width of the identified set.
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The naive confidence interval essentially assumes that the re-
searcher knows which moment conditions are binding. This is
true in large samples, unless there is a tie.

However, in finite samples ignoring uncertainty regarding the
set of binding moment inequalities may lead to a poor approxi-
mation, especially if there are many inequalities. One possibility
is to construct conservative confidence intervals (e.g., Pakes,
Porter, Ho, and Ishii, 2007). However, such intervals can be
unnecessarily conservative if there are moment inequalities that
are far from binding.

One would like construct confidence intervals that asymptot-
ically ignore irrelevant inequalities, and at the same time are
valid uniformly over the parameter space. Subsampling (but
not bootstrapping) appears to work theoretically. See Romano
and Shaikh (2007a), and Andrews and Guggenberger (2007).
Little is known about finite sample properties in realistic set-
tings.
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