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1. Linear-in-Parameters Models: IV versus

Control Functions

∙Most models that are linear in parameters are

estimated using standard IV methods – two stage

least squares (2SLS) or generalized method of

moments (GMM).

∙ An alternative, the control function (CF)

approach, relies on the same kinds of identification

conditions.

∙ Let y1 be the response variable, y2 the

endogenous explanatory variable (EEV), and z the

1  L vector of exogenous variables (with z1  1:

y1  z11  1y2  u1,     (1)

where z1 is a 1  L1 strict subvector of z. First

consider the exogeneity assumption
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Ez′u1  0.     (2)

Reduced form for y2:

y2  z2  v2, Ez′v2  0     (3)

where 2 is L  1. Write the linear projection of u1

on v2, in error form, as

u1  1v2  e1,     (4)

where 1  Ev2u1/Ev2
2 is the population

regression coefficient. By construction,

Ev2e1  0 and Ez′e1  0.

Plug (4) into (1):

y1  z11  1y2  1v2  e1,     (5)

where we now view v2 as an explanatory variable

in the equation. By controlling for v2, the error e1

is uncorrelated with y2 as well as with v2 and z.

∙ Two-step procedure: (i) Regress y2 on z and
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obtain the reduced form residuals, v̂2; (ii) Regress

y1 on z1,y2, and v̂2.     (6)

The implicit error in (6) is ei1  1zi̂2 − 2,

which depends on the sampling error in ̂2 unless

1  0. OLS estimators from (6) will be consistent

for 1,1, and 1. Simple test for null of

exogeneity is (heteroskedasticity-robust) t statistic

on v̂2.

∙ The OLS estimates from (6) are control function

estimates.

∙ The OLS estimates of 1 and 1 from (6) are

identical to the 2SLS estimates starting from (1).

∙ Now extend the model:

y1  z11  1y2  1y2
2  u1

Eu1|z  0.
    (7)
    (8)
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Let z2 be a scaler not also in z1. Under the (8) –

which is stronger than (2), and is essential for

nonlinear models – we can use, say, z2
2 as an

instrument for y2
2. So the IVs would be z1, z2, z2

2

for z1,y2,y2
2.

∙What does CF approach entail? We require an

assumption about Eu1|z,y2, say

Eu1|z,y2  Eu1|v2  1v2,     (9)

where the first equality would hold if u1,v2 is

independent of z – a nontrivial restriction on the

reduced form error in (3), not to mention the

structural error u1. Linearity of Eu1|v2 is a

substantive restriction. Now,

Ey1|z,y2  z11  1y2  1y2
2  1v2,     (10)

and a CF approach is immediate: replace v2 with v̂2
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and use OLS on (10).

∙ These CF estimates are not the same as the 2SLS

estimates using any choice of instruments for

y2,y2
2. CF approach likely more efficient, but less

robust. For example, (8) implies Ey2|z  z2.

∙ CF approaches can impose extra assumptions

even in the simple model (1). For example, if y2 is

a binary response, the CF approach based on

Ey1|z,y2 involves estimating

Ey1|z,y2  z11  1y2  Eu1|z,y2.     (11)

If y2  1z2  e2 ≥ 0, u1,e2 is independent of

z, Eu1|e2  1e2, and e2 ~Normal0, 1, then

Eu1|z,y2  1y2z2 − 1 − y2−z2,     (12)

where   / is the inverse Mills ratio

(IMR). This leads to the Heckman two-step
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estimate (for endogeneity, not sample selection).

Obtain the probit estimate ̂2 and add the

“generalized residual,”

gri2 ≡ yi2zi̂2 − 1 − yi2−zi̂2 as a

regressor: yi1 on zi1, yi2, gri2, i  1, . . . ,N.

∙ Consistency of the CF estimators hinges on the

model for Dy2|z being correctly specified, along

with linearity in Eu1|v2. If we just apply 2SLS

directly to (1), it makes no distinction among

discrete, continuous, or some mixture for y2.

∙ How might we robustly use the binary nature of

y2 in IV estimation? Obtain the fitted probabilities,

zi̂2, from the first stage probit, and then use

these as IVs for yi2. This is fully robust to

misspecification of the probit model and the usual

standard errors from IV are asymptotically valid. It
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is the efficient IV estimator if

Py2  1|z  z2 and Varu1|z  1
2.

2. Correlated Random Coefficient Models

Modify (1) as

y1  1  z11  a1y2  u1,     (13)

where a1, the “random coefficient” on y2. Think of

a1 as an omitted variable that interacts with

y2.Following Heckman and Vytlacil (1998), we

refer to (13) as a correlated random coefficient

(CRC) model.

∙Write a1  1  v1 where 1  Ea1 is the

object of interest. We can rewrite the equation as

y1  1  z11  1y2  v1y2  u1

≡ 1  z11  1y2  e1,
    (14)
    (15)

∙ The potential problem with applying instrumental

variables to (15) is that the error term v1y2  u1 is
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not necessarily uncorrelated with the instruments z,

even under

Eu1|z Ev1|z  0.     (16)

We want to allow y2 and v1 to be correlated,

Covv1,y2 ≡ 1 ≠ 0. A suffcient condition that

allows for any unconditional correlation is

Covv1,y2|z  Covv1,y2,     (17)

and this is sufficient for IV to consistently estimate

1,1.

∙ The usual IV estimator that ignores the

randomness in a1 is more robust than Garen’s

(1984) CF estimator, which adds v̂2 and v̂2y2 to the

original model, or the Heckman/Vytlacil (1998)

“plug-in” estimator, which replaces y2 with

ŷ2  z̂2. See notes.
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∙ Condition (17) cannot really hold for discrete y2.

Card (2001) shows how it can be violated even if

y2 is continuous. Wooldridge (2005) shows how to

allow parametric heteroskedasticity.

∙ In the case of binary y2, we have what is often

called the “switching regression” model. If

y2  1z2  v2 ≥ 0 and v2|z is Normal0, 1, then

Ey1|z,y2  1  z11  1y2

 1h2y2,z2  1h2y2,z2y2,

where

h2y2,z2  y2z2 − 1 − y2−z2

is the generalized residual function. The two-step

estimation method is the one due to Heckman

(1976).

∙ Can also interact the exogenous variables with

h2yi2,zi̂2. Or, allow Ev1|v2 to be more
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flexible, as in Heckman and MaCurdy (1986).

3. Some Common Nonlinear Models and

Limitations of the CF Approach

∙ CF approaches are more difficult to apply to

nonlinear models, even relatively simple ones.

Methods are available when the endogenous

explanatory variables are continuous, but few if any

results apply to cases with discrete y2.

Binary and Fractional Responses

Probit model:

y1  1z11  1y2  u1 ≥ 0,     (18)

where u1|z ~Normal0, 1. Analysis goes through if

we replace z1,y2 with any known function

x1 ≡ g1z1,y2.

∙ The Blundell-Smith (1986) and Rivers-Vuong

(1988) approach is to make a
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homoskedastic-normal assumption on the reduced

form for y2,

y2  z2  v2, v2|z ~Normal0,2
2.     (19)

A key point is that the RV approach essentially

requires

u1,v2 independent of z.     (20)

If we also assume

u1,v2 ~Bivariate Normal     (21)

with 1  Corru1,v2, then we can proceed with

MLE based on fy1,y2|z. A CF approach is

available, too, based on

Py1  1|z,y2  z11  1y2  1v2     (22)

where each coefficient is multiplied by

1 − 1
2−1/2.

The RV two-step approach is
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(i) OLS of y2 on z, to obtain the residuals, v̂2.

(ii) Probit of y1 on z1,y2, v̂2 to estimate the

scaled coefficients. A simple t test on v̂2 is valid to

test H0 : 1  0.

∙ Can recover the original coefficients, which

appear in the partial effects. Or,

ASFz1,y2  N−1∑
i1

N

x1̂1  ̂1v̂i2,     (23)

that is, we average out the reduced form residuals,

v̂i2. This formulation is useful for more complicated

models.

∙ The two-step CF approach easily extends to

fractional responses:

Ey1|z,y2,q1  x11  q1,     (24)

where x1 is a function of z1,y2 and q1 contains
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unobservables. Can use the the same two-step

because the Bernoulli log likelihood is in the linear

exponential family. Still estimate scaled

coefficients. APEs must be obtained from (23). In

inference, we should only assume the mean is

correctly specified.method can be used in the

binary and fractional cases. To account for

first-stage estimation, the bootstrap is convenient.

∙Wooldridge (2005) describes some simple ways

to make the analysis starting from (24) more

flexible, including allowing Varq1|v2 to be

heteroskedastic.

∙ The control function approach has some decided

advantages over another two-step approach – one

that appears to mimic the 2SLS estimation of the

linear model. Rather than conditioning on v2 along
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with z (and therefore y2) to obtain

Py1  1|z,v2  Py1  1|z,y2,v2, we can obtain

Py1  1|z. To find the latter probability, we plug

in the reduced form for y2 to get

y1  1z11  1z2  1v2  u1  0. Because

1v2  u1 is independent of z and normally

distributed, Py1  1|z  z11  1z2/1.

So first do OLS on the reduced form, and get fitted

values, ŷ i2  zi̂2. Then, probit of yi1 on zi1,ŷ i2.

Harder to estimate APEs and test for endogeneity.

∙ Danger with plugging in fitted values for y2 is

that one might be tempted to plug ŷ2 into nonlinear

functions, say y2
2 or y2z1. This does not result in

consistent estimation of the scaled parameters or

the partial effects. If we believe y2 has a linear RF

with additive normal error independent of z, the
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addition of v̂2 solves the endogeneity problem

regardless of how y2 appears. Plugging in fitted

values for y2 only works in the case where the

model is linear in y2. Plus, the CF approach makes

it much easier to test the null that for endogeneity

of y2 as well as compute APEs.

∙ Extension to random coefficients:

Ey1|z,y2,c1  z11  a1y2  q1,     (25)

where a1 is random with mean 1 and q1 again has

mean of zero. If we want the partial effect of y2,

evaluated at the mean of heterogeneity, is

1z11  1y2.     (26)

The APE in this case is much messier.

∙ Could just implement flexible CF approaches

without formally starting with a “structural” model.
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For example, could just do Bernoulli QMLE of yi1
on zi1, yi2, v̂i2, and yi2v̂i2. Even here, APE can be

different sign from 1.

∙ Lewbel (2000) has made some progress in

estimating parameters up to scale in the model

y1  1z11  1y2  u1  0, where y2 might be

correlated with u1 and z1 is a 1  L1 vector of

exogenous variables. Let z be the vector of all

exogenous variables uncorrelated with u1. Then

Lewbel requires a continuous element of z1 with

nonzero coefficient – say the last element, zL1 – that

does not appear in Du1|y2,z or Dy2|z. (y2

cannot play the role) Cannot be an instrument as

we usually think of it. Can be a variable

randomized to be independent of y2 and z.

∙ Returning to the response function
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Ey1|z,y2,q1  x11  q1, we can understand

the limits of the CF approach for estimating

nonlinear models with discrete EEVs. The

Rivers-Vuong approach does not work.We cannot

write Dy2|z Normal(z2,2
2. There are no

known two-step estimation methods that allow one

to estimate a probit model or fractional probit

model with discrete y2, even if we make strong

distributional assumptions.

∙ There some poor strategies that still linger.

Suppose y1 and y2 are both binary and

y2  1z2  v2 ≥ 0     (27)

and we maintain joint normality of u1,v2.We

should not try to mimic 2SLS as follows: (i) Do

probit of y2 on z and get the fitted probabilities,

̂2  z̂2. (ii) Do probit of y1 on z1, ̂2, that is,
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just replace y2 with ̂2.

∙ Currently, the only strategy we have is maximum

likelihood estimation based on fy1|y2,zfy2|z.

(Perhaps this is why some, such as Angrist (2001),

promote the notion of just using linear probability

models estimated by 2SLS.)

∙ Yes, “bivariate” probit software be used to

estimate the probit model with a binary endogenous

variable. In fact, with any function of z1 and y2 as

explanatory variables.

∙ Parallel discussions hold for ordered probit,

Tobit.

Multinomial Responses

∙ Recent push, by Villas-Boas (2005) and Petrin

and Train (2006), among others, to use control

function methods where the second step estimation
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is something simple – such as multinomial logit, or

nested logit – rather than being derived from a

structural model. So, if we have reduced forms

y2  z2  v2,     (28)

then we jump directly to convenient models for

Py1  j|z1,y2,v2. The average structural

functions are obtained by averaging the response

probabilities across v̂i2. No convincing way to

handle discrete y2, though.

Exponential Models

∙ Both IV approaches and CF approaches are

available for exponential models. With a single

EEV, write

Ey1|z,y2, r1  expz11  1y2  r1,     (29)

where r1 is the omitted variable. (Extensions to
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general nonlinear functions x1  g1z1,y2 are

immediate; we just add those functions with linear

coefficients to (29). CF methods based on

Ey1|z,y2, r1  expz11  1y2Eexpr1|z,y2

This has been worked through when Dy2|z is

homoskedastic normal (Wooldridge, 1997 – see

notes for a random coefficient version where 1

becomes a1 with Ea1  1) and Dy2|z follows

a probit (Terza, 1998). In the latter case,

Ey1|z,y2  expz11  1y2hy2,z2,1

hy2,z2,1  exp1
2/2y21  z2/z2

 1 − y21 − 1  z2/1 − z2

∙ IV methods that work for any y2 are also

available, as developed by Mullahy (1997). If

Ey1|z,y2, r1  expx11  r1     (30)
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and r1 is independent of z then

Eexp−x11y1|z  Eexpr1|z  1,     (31)

where Eexpr1  1 is a normalization. The

moment conditions are

Eexp−x11y1 − 1|z  0.     (32)

4. Semiparametric and Nonparametric

Approaches

Blundell and Powell (2004) show how to relax

distributional assumptions on u1,v2 in the model

y1  1x11  u1  0, where x1 can be any

function of z1,y2. Their key assumption is that y2

can be written as y2  g2z  v2, where u1,v2 is

independent of z, which rules out discreteness in

y2. Then

Py1  1|z,v2  Ey1|z,v2  Hx11,v2     (33)
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for some (generally unknown) function H, . The

average structural function is just

ASFz1,y2  Evi2Hx11,vi2.

∙ Two-step estimation: Estimate the function g2

and then obtain residuals v̂i2  yi2 − ĝ2zi. BP

(2004) show how to estimate H and 1 (up to

scaled) and G, the distribution of u1. The ASF is

obtained from Gx11 or

ASFz1,y2  N−1∑
i1

N

Ĥx1̂1, v̂i2;     (34)

∙ Blundell and Powell (2003) allow Py1  1|z,y2

to have the general form Hz1,y2,v2, and then the

second-step estimation is also entirely

nonparametric. They also allow ĝ2 to be fully

nonparametric. Parametric approximations in each

stage might produce good estimates of the APEs.
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∙ BP (2003) consider a very general setup, which

starts with y1  g1z1,y2,u1, and then discuss

estimation of the ASF, given by

ASF1z1,y2   g1z1,y2,u1dF1u1,     (35)

where F1 is the distribution of u1. The key

restrictions are that y2 can be written as

y2  g2z  v2,     (36)

where u1,v2 is independent of z. The key is that

the ASF can be obtained from

Ey1|z1,y2,v2  h1z1,y2,v2 by averaging out

v2, and fully nonparametric two-step estimates are

available.

∙ Provides justification for the parametric versions

discussed earlier, where the step of modeling g1

in y1  g1z1,y2,u1 can be skipped.
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∙ Imbens and Newey (2006) consider the triangular

system, but without additivity in the reduced form

of y2,

y2  g2z,e2,     (37)

where g2z,  is strictly monotonic. Rules out

discrete y2 but allows some interaction between the

unobserved heterogeneity in y2 and the exogenous

variables. When u1,e2 is independent of z, a valid

control function to be used in a second stage is

v2 ≡ Fy2|zy2|z, where Fy2|z is the conditional

distribution of y2 given z.

5. Methods for Panel Data

∙ Combine methods for handling correlated

random effects models with control function

methods to estimate certain nonlinear panel data

models with unobserved heterogeneity and EEVs.
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∙ Illustrate a parametric approach used by Papke

and Wooldridge (2007), which applies to binary

and fractional responses.

∙ In this model, nothing appears to be known about

applying “fixed effects” probit to estimate the fixed

effects while also dealing with endogeneity. Likely

to be poor for small T. Perhaps jackknife methods

can be adapted, but currently the assumptions are

very strong (serial independence, homogeneity over

time, exogenous regressors).

∙Model with time-constant unobserved

heterogeneity, ci1, and time-varying unobservables,

vit1, as

Eyit1|yit2,zi,ci1,vit1  1yit2  zit11

 ci1  vit1.     (38)

Allow the heterogeneity, ci1, to be correlated with
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yit2 and zi, where zi  zi1, . . . ,ziT is the vector of

strictly exogenous variables (conditional on ci1).

The time-varying omitted variable, vit1, is

uncorrelated with zi – strict exogeneity – but may

be correlated with yit2. As an example, yit1 is a

female labor force participation indicator and yit2 is

other sources of income.

∙Write zit  zit1,zit2, so that the time-varying

IVs zit2 are excluded from the “structural.”

∙ Chamberlain approach:

ci1  1  z̄i1  ai1,ai1|zi ~ Normal0,a1
2 .     (39)

We could allow the elements of zi to appear with

separate coefficients, too. Note that only exogenous

variables are included in z̄i. Next step:

Eyit1|yit2,zi, rit  1yit2  zit11  1  z̄i1  rit1
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where rit1  ai1  vit1. Next, we assume a linear

reduced form for yit2:

yit2  2  zit2  z̄i2  vit2, t  1, . . . ,T.     (40)

Rules out discrete yit2 because

rit1  1vit2  eit1,     (41)

eit1|zi,vit2 ~ Normal0,e1
2 , t  1, . . . ,T.     (42)

Then

Eyit1|zi,yit2,vit2  e1yit2  zit1e1
 e1  z̄ie1  e1vit2     (43)

where the “e” subscript denotes division by

1  e1
2 1/2. This equation is the basis for CF

estimation.

∙ Simple two-step procedure: (i) Estimate the

reduced form for yit2 (pooled across t, or maybe for

each t separately; at a minimum, different time
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period intercepts should be allowed). Obtain the

residuals, v̂it2 for all i, t pairs. The estimate of 2 is

the fixed effects estimate. (ii) Use the pooled probit

(quasi)-MLE of yit1 on yit2,zit1, z̄i, v̂it2 to estimate

e1,e1,e1,e1 and e1.

∙ Delta method or bootstrapping (resampling cross

section units) for standard errors. Can ignore

first-stage estimation to test e1  0 (but test

should be fully robust to variance misspecification

and serial independence).

Estimates of average partial effects are based on the

average structural function,

Eci1,vit1 1yt2  zt11  ci1  vit1,     (44)

which is consistently estimated as
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N−1∑
i1

N

̂e1yt2  zt1̂e1  ̂e1  z̄i̂e1  ̂e1v̂it2.     (45)

These APEs, typically with further averaging out

across t and the values of yt2 and zt1, can be

compared directly with fixed effects IV estimates.

∙We can use the approaches of Altonji and

Matzkin (2005), Blundell and Powell (2003), and

Imbens and Newey (2006) to make the analysis less

parametric. For example, we might replace (40)

with yit2  g2zit, z̄i  vit2 or yit2  g2zit, z̄i,eit2

under monotonicity in e2. Then a reasonable

assumption is

Dci1  vit1|zi,yit2,vit2  Dci1  vit1|z̄i,vit2     (46)

where, in the Imbens and Newey case,

vit2  Fyt2|zt,z̄yit2|zit, z̄i. After a first stage
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estimation, the ASF can be obtained by estimating

Eyit1|zit1,yit2, z̄i,vit2 and then averaging out across

z̄i, v̂it2.
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