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Abstract

The aim of this paper is to study how the intertemporal behavior of taxes affects the wealth
distribution. The optimal-taxation literature has often concentrated on representative-agent
models, in which it is optimal to smooth distortionary taxes. When tax liabilities are unevenly
spread in the population, deviations from tax smoothing lead to interest rate changes that
redistribute wealth. When a “bad shock” hits the economy, the optimal policy will then call
for smaller or larger deficits depending on the political power of different groups. The model
is applied to war financing and the introduction of a balanced-budget policy.

1 Introduction

The tax structure in an economy is in part the result of a struggle over the distribution of re-
sources. The aim of this work is to study one aspect of this struggle, the choice of an optimal
intertemporal tax plan. The intertemporal aspect of fiscal policy is important because any gov-
ernment constantly faces fiscal shocks. These may come from a wide variety of sources: business
cycles, financial crises, the transition from a centralized to a decentralized economic system and
wars. In any of these cases, the government must choose among various policies for accommo-
dating the shock. For example, a negative shock can be absorbed by an increase in taxes, a low
return on previously issued state-contingent debt, or new issues of debt to be repaid with future
taxes.

Different groups of agents in the economy have different preferences over these policies, and
the goal of this paper is to study how these differences are resolved.

On the normative side, I am interested in studying the characteristics of second-best tax
policies, which will trace a (second-best) Pareto frontier. A benevolent government would choose
one of these policies; which one depends on its relative preferences for the different classes of
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agents in our economy. Along the Pareto frontier, we can also inquire whether there is a trade-
off between “equity and efficiency.” For extreme values for the Pareto weights, the incentive to
redistribute wealth may lead the government to impose significant distortions in the economy.

In addition, although in reality the political process is more complicated than a benevolent
planner, a good political system will select policies close to the Pareto frontier. For this reason,
my analysis is also likely to have some positive implications. Moreover, these are more evident
the sharper the welfare differences among the possible policies, i.e., in cases of large fiscal shocks,
such as wars.

A striking example of different experiences in war financing comes from England and France
in the 17th and 18th centuries. As discussed in Sargent and Velde [18], England relied heavily
on debt to finance its wars, while France made heavy use of temporary tax increases. These
differences cannot be easily explained by representative-agent models, but I show through an
example that they can be accounted for by the theory I am proposing.

The main conflict I study in this paper opposes the “taxpayers,” who bear the burden of
taxes, and the “rentiers,” simply identified as all the other agents in the economy. In the model
I present, I concentrate on labor-income taxation by considering an economy without capital,
similar to the setup of Lucas and Stokey [13]: output is produced by a constant-returns-to-scale
(CRS) technology requiring only labor supplied by the taxpayers; labor income is taxed by the
government in order to finance an exogenous stream of public spending. The rentiers live off their
asset income, which could possibly come from transfers to which the government is committed.1

Government spending is the main source of uncertainty; the desirability of random policies is
explored by introducing a further stochastic process that plays the role of a public randomization
device. The government and the two classes of agents trade in complete markets. For most of the
paper I look at Ramsey equilibria, i.e., I assume that the government commits at the beginning to
a (state-contingent) tax policy. Only in section 7 do I allow for the possibility that the government
chooses its policies sequentially, and I study conditions that guarantee time consistency of the
Ramsey equilibria.

With constant government spending, I show that tax smoothing is beneficial to the taxpayers,
but that the rentiers would achieve a higher welfare if the government varied tax rates over time.
The traditional, representative-agent analysis of this model concludes that a constant tax rate
is optimal because it minimizes the distortions caused by taxation. With heterogeneous agents,
when the tax rate is higher the taxpayers borrow from the rentiers, whereas the opposite happens
when the tax rate is low. A varying tax rate, furthermore, affects the prices in a way that favors
the rentiers and harms the taxpayers. This is the source of the distributional conflict.

When government spending varies over time, the taxpayers favor large deficits in periods
of high spending. Government spending is ultimately paid for by the taxpayers; when it is
temporarily high, they need to borrow, either directly or through government debt backed by
future tax revenues. A lower tax rate (i.e., a larger deficit) affects prices so that the taxpayers
borrow at more favorable terms.

The plan of the paper is the following: section 2 discusses the related literature; section 3
presents the general model; section 4 specializes it to the 2-class economy I study in greater
detail. Section 5 presents numerical examples of the solution and discusses the main results.

1Allowing the rentiers to supply some work would not change our results, if they were subject to a low or zero
tax rate: the important difference between the two classes comes from the fact that the taxpayers provide all (or
most) of the government revenues.
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Section 6 contrasts the results I obtain with the literature on uniform commodity taxation and
explains the similarities and the sources of differences. Section 7 contains some results on the
time consistency of the optimal tax plans when the assumption of full commitment is relaxed,
and section 8 concludes.

2 The Literature

Many papers have studied how the tax burden should optimally be distributed over time. A
seminal paper by Barro [3] established a benchmark to assess the relevance of this question. The
central result of this paper is the proposition known as Ricardian equivalence: in a world of
identical agents (or dynasties) and lump-sum taxes, the timing of taxes has no effect on prices,
the allocation, and welfare in the economy. Therefore, any theory of optimal taxation over time
must consider either distortionary taxes or heterogeneous agents.

The literature that has focused on distortionary taxes has mainly studied representative-agent
economies.

Barro [4] studied a simple model of convex distortions from taxation. The paper derives tax
smoothing as the principal policy prescription: the optimal tax plan spreads distortions over time
and finances temporary increases in government spending by issuing debt.

Turnovsky and Brock [21] is, to my knowledge, the first paper that addresses the issue of
optimal income taxation in a dynamic general equilibrium model with distortions. However,
their paper is cast in a deterministic context and does not address the issue of the optimal fiscal
response to shocks, which is Barro’s main focus.

Lucas and Stokey [13] (L-S from now on) build a dynamic general equilibrium framework to
address Barro’s issue; their work generalizes the work by Ramsey [16] on optimal commodity
taxation in a static microeconomic environment. L-S show that the government can smooth
labor income tax revenues even more than in Barro’s setup by “purchasing insurance” against
unfavorable shocks to government spending. This can be achieved by issuing state-contingent
bonds whose return is higher in favorable states and lower when a “bad shock” occurs.2 More
examples along this line are provided in Sargent and Velde [19], who specialize this problem to a
linear-quadratic framework.

Several papers have generalized the results of L-S. For instance, Chari, Christiano and Ke-
hoe [8] and Bohn [7] abandon the assumption of a pure exchange economy and study the optimal
intertemporal taxation when capital and investment decisions are taken into account.

Most of these papers have studied representative-agent economies and have thus disregarded
the distributional effects that different tax plans have in a world of heterogeneous agents.

An exception is Persson and Svensson [15], who study optimal taxation in an open economy,
where heterogeneity is given by the presence of domestic and foreign consumers. However, their
emphasis is mainly on the conditions required for time consistency of the optimal policy; my
research is instead aimed at characterizing the optimal policy and studying the economic forces
that drive it.

The choice of optimal distortionary taxes in a static environment with heterogeneous agents
has been addressed by Atkinson and Stiglitz [2]. One contribution of their paper is to provide

2As Chari, Christiano and Kehoe [8] suggest, this is equivalent to capital income taxation on government bonds.
Following this interpretation, total tax revenues would then be usually more volatile than government spending,
rather than smoother. The crucial result is however that labor income tax revenues are smoothed.
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conditions in which uniform commodity taxation is optimal. I will show why these conditions are
violated in our dynamic environment; in doing so, I will also clarify similarities and differences
between the static and dynamic models of optimal taxation that are left implicit by Lucas and
Stokey [13].

Among the papers that have studied the distributional implications of different intertemporal
tax plans, several have focused on the conflict between the elderly, the young, and the unborn that
arises in overlapping-generations models when the altruistic links are weak, unlike in Barro [3].3

In this setup, different tax plans lead to different prices and allocations even when taxes are
lump-sum because the agents are short-lived and government debt shifts the tax burden to future
generations.

I focus on other sources of heterogeneity. In particular, an important one stems from the
observation that the burden of taxes is spread unevenly in the population. In the past, some
classes in the population were largely exempt from taxes (e.g., the nobility or the clergy); the
model I develop resembles most closely this extreme case. In modern times, the burden of labor
income taxes is unevenly spread because of progressive income taxation, which hits the most
productive agents disproportionately, and because of the different importance of labor income in
the budget of different households in the economy.

Similar sources of heterogeneity have been studied especially by authors interested in capital
income taxation, as Judd [12]. Judd, however, studies mainly what happens when some of the
agents (the “workers”) are denied access to capital markets; for the case in which all agents have
access to capital markets, only an asymptotic result is derived. These limitations are common.
Ben-Gad [6] studies the effect of the timing of taxes in two-period models, where the major impact
of government debt is due to the presence of incomplete markets. Conklin [9] studies the time-
consistency properties of an optimal tax plan when costless default is allowed; his paper shares
the same two-class division I will assume in the numerical examples, but it is not well suited to
address the effect on interest rates of different policies because the taxpayers are denied access to
any financial market in his model. As a consequence, the government acts mainly as a financial
intermediary between the taxpayers and the rentiers.

As Judd [12] points out, optimal taxation may be very different when all agents are allowed
access to financial markets. We will focus on the impact on prices and the allocation that
distortionary taxation can have in a complete-market environment. In choosing the optimal path
of taxes, the government affects the asset-pricing kernel. This can be used both for reducing the
burden of taxation and for redistributing wealth.

3 The Model

In this section we present the general setup of the economy: we introduce the preferences, the
technology, and the government; we define the equilibrium concept to be used throughout most of
the paper; and we provide a few general results that will be useful for characterizing the solution.

We consider an economy populated by N agents, which may differ by their preferences, their
initial wealth, and their productivity while at work.

3See, e.g., Weil [23], Tabellini [20].
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3.1 Endowment and Technology

There is an exogenous stream of public spending; public spending does not affect the utility of the
agents.4 We define gt to be public spending in period t; we will also use the convenient notation
gst ≡ {gu}su=t and gs ≡ {gu}su=0. {gt}∞t=0 is a stochastic process with values in a measurable space
(G,G), where G is a subset of the real line and G is its Borel σ-algebra.

For reasons that will become clear later, it is convenient to introduce a “public randomization”
or “sunspot” process {ht}∞t=0 with values in (H,H).

Let Jt denote the σ-algebra generated by (gt, ht): Jt contains hence all information available
up to time t. Given any random variable yt measurable with respect to Jt, we define Esyt as the
expectation conditional on Js.5

There is no storage, and only one consumption good. Output is produced through a CRS
technology: in each period and each state, 1 unit of time spent working by agent i produces wi

units of output. Each agent is endowed with 1 unit of time. Each agent must choose a plan for
consumption and leisure {(cit, xit)}∞t=0 adapted to the filtration {Jt}∞t=0, where cit is consumption
of the i-th agent at time t and xit is leisure of the i-th agent at time t.

The government can levy proportional taxes on (or provide subsidies to) the labor income of
each agent in the economy. We assume that the tax rate is constrained to be equal across agents
and that the marginal tax rate is constant on all labor income (i.e., there is proportional taxation).
The former is an “anonymity” assumption: the government cannot directly distinguish among
the different agents, so it is not possible to tailor the tax rate to the individual agents. The latter
assumption is mainly aimed at simplifying the analysis, but it may also be necessary to avoid
lump-sum taxation when we have a small number of types of agents.6 We assume that the tax
rate must be adapted to {Jt}∞t=0. This implies that at each date and in each state the consumer
knows the tax rate before implementing the consumption/leisure decision for that period. We do
not allow the government to “toss a coin” to determine the amount of taxes due after production
has taken place.

There are complete markets, both for privately-issued and publicly-issued securities; the
government is not allowed to default on previously issued debt instruments, so privately– and
publicly-issued claims are perfect substitutes.

We will define sb
i
t to be the amount of government-issued contingent claims payable at time

t that the i-th agent holds at the beginning of period s; if this is a negative number, then it
will mean that the i-th agent owes to the government. We will also define sη

i
t to be the amount

of privately-issued contingent claims payable at time t that the agent holds at the beginning of
period s. Both sb

i
t and sη

i
t are hence random variables adapted to {Jt}∞t=0.

4As usual, the results do not change if public spending does enter in the utility function of the individuals, but
only in a separable way.

5We allow t = +∞ to account for infinite summations.
6If the government were able to choose freely how the tax rate varied with income, it would try to set it at

arbitrarily high values on inframarginal income and at 0 or very low at the income levels chosen by each of the
agents in the economy.
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3.2 Preferences

The preferences of the i-th consumer are described by:

U i ≡ E0

∞∑
t=0

βtui(cit, x
i
t). (1)

We assume ui is strictly concave, is continuously differentiable, and satisfies Inada conditions.
The preferences of the government are described by the following social welfare function:

W ≡
N∑
i=1

ωiU i, (2)

where ωi is the Pareto weight of the i-th agent (a single individual, or the representative agent
of the i-th group).

3.3 Equilibrium

We will consider Ramsey equilibria. In the Ramsey problem the government sets a contingent
policy at time 0 and is never allowed to revise it. The agents take the policy parameters as given.
Since markets are complete, we can assume that they choose their optimal contingent plans at
time 0 based on a single Arrow-Debreu budget constraint. More precisely, the timing of the
economy is described by the following:

(i) The economy starts at time 0 with some given level of public spending g0; each agent inherits
some claims from the past: the i-th agent starts with 0b

i
t government-issued claims and 0η

i
t

privately-issued claims. Consistency requires this initial condition to satisfy:

N∑
i=1

0η
i
t ≡ 0 ∀t ≥ 0 a.s. (3)

We assume that both 0b
i
t and 0η

i
t are adapted to the information generated by (the history

of) gt alone: the coupon payments inherited at time 0 do not depend on the realizations of
the process ht, which is why we may call it a “sunspot.”

(ii) The government sets a contingent path for the tax rate {τt}∞t=0.

(iii) The consumers make their optimal (contingent) plans given the government policy, by
choosing {{(cit, xit)}Ni=1}∞t=0. Note that the consumers behave atomistically, so the outcome
would not change if we considered their decision to be sequential.

(iv) h0 is realized.

In the subsequent periods, the production and consumption plans are implemented according
to the decisions made at time 0.

The i-th agent has the following Arrow-Debreu budget constraint:

E0

∞∑
t=0

βt{pt[cit −0 η
i
t −0 b

i
t − (1− τt)wi(1− xit)]} ≤ 0, (4)
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where pt is the asset pricing kernel.
The government budget constraint for the Ramsey problem is:

E0

∞∑
t=0

βt

{
pt

[
gt +

N∑
i=1

(
0b
i
t − τtwi(1− xit)

)]}
= 0. (5)

Definition 1 (competitive equilibrium) A competitive equilibrium is a policy {τt}∞t=0, an
allocation {{(cit, xit)}Ni=1}∞t=0, a price system {pt}∞t=0 and initial conditions {{(0b

i
t,0 η

i
t)}Ni=1}∞t=0 s.t.

(i) given the price system, the government policy and the initial conditions, the allocation
maximizes the utility of each consumer subject to her budget constraint described by (4);

(ii) the government budget constraint (5) is satisfied;

(iii) the markets clear, i.e.,

N∑
i=1

cit + gt =
N∑
i=1

wi(1− xit) ∀t ≥ 0 a.s. (6)

Definition 2 (Ramsey equilibrium) A Ramsey equilibrium is any competitive equilibrium
for which (2) is maximized by choice of a policy function.

We first look at the conditions for a competitive equilibrium. The first-order conditions for
the private agents of our economy are the following:

uix(cit, x
i
t)

uic(cit, x
i
t)
≥ wi(1− τt) ∀t ≥ 0 a.s. ∀i = 1, . . . , N (7)

and

uic(c
i
t, x

i
t)

uic(ci0, x
i
0)

=
pt
p0

∀t ≥ 0 a.s. ∀i = 1, . . . , N, (8)

where (7) must hold with equality if xit < 1, i.e., when the agent is supplying a positive amount
of labor. The non-negativity constraints on consumption and leisure are never binding because
of the Inada conditions. A competitive equilibrium is characterized by equations (4), (6), (7) and
(8). Note that one budget constraint is redundant, so the government budget constraint (5) is
automatically satisfied given the previous equations.

From standard comparative statics, we see that a change in pt will increase the welfare of an
agent i when cit −0 η

i
t −0 b

i
t − (1 − τt)wi(1 − xit) < 0 and decrease it when the reverse inequality

holds. An agent will benefit from an increase in the relative price of the (possibly contingent)
good she is relatively more endowed with. When cit −0 η

i
t −0 b

i
t − (1 − τt)wi(1 − xit) < 0, the

i-th agent is a net seller of the considered good: her endowment, either from production or from
initial financial claims, is larger than her consumption.

In a world of heterogeneous agents, it will often happen that some agents are net buyers and
some agents are net sellers of any given good. By affecting the pricing kernel, the government
will thus achieve redistribution among these agents.
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In our model, preferences and technology are common knowledge, and the government would
take into account the net trade position of each agent in each state-contingent good. In practice,
our results will be interesting when a specific source of heterogeneity determines a clear pattern
of trade among private agents: it is in this case that the distributional goals of the government
will play a significant role in our analysis.

3.4 General Properties

We will now prove some properties that will be very useful in characterizing and computing
Ramsey equilibria.

Theorem 1 For any competitive equilibrium of the described economy, there exist functions
{Ci}Ni=1, {Xi}Ni=1, P : G× R→ R such that:

cit = Ci(gt, τt) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
xit = Xi(gt, τt) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
pt = P (gt, τt) ∀t ≥ 0 a.s.

(9)

Proof. See Appendix.

Note that the functions Ci, Xi and P depend on which competitive equilibrium we are in.
The theorem compares consumption-leisure choices within a given competitive equilibrium, not
across competitive equilibria.

Theorem 1 states that, in any given competitive equilibrium, the consumption and leisure
choices of all agents in the economy will be the same in all periods and/or states in which
government spending and the tax rate are the same.

Theorem 2 For given initial conditions {{(0b
i
t,0 η

i
t)}Ni=1}∞t=0 and a given process {gt}∞t=0 for gov-

ernment spending, let {τt}∞t=0 and {τ̃t}∞t=0 be two policies satisfying the following requirements:
∞∑
t=0

βtProb((gt, {(0b
i
t,0 η

i
t)}Ni=1, τt) ∈ A)

=
∞∑
t=0

βtProb((gt, {(0b
i
t,0 η

i
t)}Ni=1, τ̃t) ∈ A) ∀A ∈ G × B2N+1.

(10)

Let 
cit = Ci(gt, τt) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
xit = Xi(gt, τt) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
pt = P (gt, τt) ∀t ≥ 0 a.s.

(11)

describe an allocation and a price system that form a competitive equilibrium given the initial
conditions, the spending process and the policy {τt}∞t=0. Then the same functions:

cit = Ci(gt, τ̃t) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
xit = Xi(gt, τ̃t) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
pt = P (gt, τ̃t) ∀t ≥ 0 a.s.

(12)
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describe an allocation and a price system that form a competitive equilibrium given the initial
conditions, the spending process and the policy {τ̃t}∞t=0. Furthermore, the utility of each agent is
the same in either equilibrium, and hence the same is true for government welfare.

Proof. See Appendix.

Definition 3 (Policy equivalence) We call two policies equivalent whenever (10) holds.

Theorem 2 justifies the definition of equivalence. Intuitively, it does not matter what kind
of randomization over taxes the government chooses, or its distribution over time: in an Arrow-
Debreu economy, it only matters how often it takes a given value and how it moves in line with
the “fundamentals,” i.e., government spending and the coupon payments.

As an example of equivalent policies, consider a world where government spending is con-
stant and all outstanding claims at time 0 are annuities, so (gt, {(0b

i
t,0 η

i
t)}Ni=1) are constant and

deterministic. The first policy sets the tax rate to some level τ1 in even periods and to some
other level τ2 in odd periods. The second policy sets the tax rate permanently to either τ1 or τ2,
depending on the outcome of h0; the policy is designed in such a way that the probability of the
tax rate being τ1 is 1

1+β . It is easy to see that (10) holds for these policies. While the behavior
over time of the economy under these two policies is very different, they look very similar ex-
ante from an Arrow-Debreu point of view: in one case the agents and the government will trade
claims to consumption over time, whereas in the other case they will trade claims to consumption
across states. What matters, though, is that the marginal rate of substitution between goods
in even and in odd periods in the former case and between goods in the first and in the second
state in the latter are equal whenever the consumption levels are. This result arises from the
presence of Arrow-Debreu markets and from the fact that our preferences are additive both with
respect to time (strong time separability) and with respect to different events (a property of Von
Neumann-Morgenstern preferences).

The government would be indifferent between two equivalent policies, and so would each of
the private agents. Furthermore, the allocation and the price system are described by the same
functions in the competitive equilibria associated with the two different policies. Therefore, if we
solve for the competitive equilibrium associated with a given policy, we can infer immediately
the allocation and the price system that form a competitive equilibrium with any policy that is
equivalent to it.

Guided by Theorem 2, we will now restrict our attention to a simpler set of policies.

Corollary 1 Let {τt}∞t=0 be a policy adapted to the information generated by {gt}∞t=0 and any
sunspot process {ht}∞t=0. Let {h̃t}∞t=0 be the following sunspot process: (H̃, H̃) = ([0, 1],B([0, 1])),
h̃0 is distributed according to a uniform distribution and is independent of {gt}∞t=0; h̃t = h̃0 ∀t ≥
0 a.s.. Then there exists a policy {τ̃t}∞t=0, equivalent to {τt}∞t=0, such that τ̃t can be expressed as
a (measurable) function of gt, {(0b

i
t,0 η

i
t)}Ni=1 and h̃0.

Proof. See Appendix.

Corollary 2 Let {ht}∞t=0 be a sunspot process described as follows: (H,H) = ([0, 1],B([0, 1])), h0

is distributed according to a uniform distribution and is independent of {gt}∞t=0; ht = h0 ∀t ≥
0 a.s.. Let {τt}∞t=0 be the best policy among those adapted to the information generated by {gt}∞t=0
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and the sunspot process {ht}∞t=0, i.e., the one that leads to the competitive equilibrium with the
highest value W for the government. Then {τt}∞t=0 achieves a payoff which is greater than or equal
to the payoff that the government can achieve using the best policy adapted to the information
generated by gt and any sunspot process {ĥt}∞t=0.

Proof. By Corollary 1, the best policy that is adapted to the information generated by {gt}∞t=0

and a sunspot process {ĥt}∞t=0 is equivalent to some policy adapted to the information generated
by {gt}∞t=0 and {ht}∞t=0. The implication then follows trivially. QED.

From now on we will assume the sunspot process to be the one described in Corollary 2.
Since the process is simply constant after time 0, we will drop the time subscript and use just
h to indicate the single random variable h0. We will study the Ramsey equilibrium where the
allocation and the asset-pricing kernel only depend on (gt, {(0b

i
t,0 η

i
t)}Ni=1, h). This is done simply

for convenience; using Theorem 2, we can characterize Ramsey equilibria in which the government
follows different (but equivalent) policies, such as deterministic variations of the tax rate over time
even when the fundamentals are constant.

From now on we will thus define the measure m as:

m(A) ≡
∞∑
t=0

βtProb((gt, {(0b
i
t,0 η

i
t)}Ni=1, h) ∈ A) ∀A ∈ G × B2N+1, (13)

and we will use this measure in evaluating (1), (2), (4) and (5).

4 The Two-class Economy

In this section we specialize the general framework presented above. We consider an economy
populated by two types of agents: a measure N1 of agents of type 1 and (by normalization) a
measure 1 of agents of type 2. Type 1 agents are “rentiers.” Their productivity is 0, so they
always choose x1

t = 1. They have no labor income, and live only out of their assets.7 Type-
2 agents are identified as the “taxpayers,” as they are the only ones having labor income and
thereby paying taxes. We normalize their productivity to be w2 = 1.

We assume agents to be completely homogeneous within groups. When ω1 = 0, i.e., when
the government maximizes the welfare of the taxpayers only, we can interpret this as an open
economy where the government does not have the authority to tax foreigners; in this case our
setup is basically the same as that in Persson and Svensson [15].8

We assume the agents have the following utility functions:

u1(c1
t , x

1
t ) =

(c1
t )

1−γ − 1
1− γ

(14)

7As mentioned in the introduction, the important aspect for our analysis is not that the rentiers do not work,
but that they are not subject to taxes. We could easily adjust the analysis to allow for labor income to be earned
by the rentiers, with little difference for the results, as long as their income was not subject to taxes.

8Our economy is closest to the second setup in Persson and Svensson [15], in which they allow for perfect capital
mobility. The only difference is that the rentiers (i.e., the foreign agents) are endowed with an independent stream
of revenues, whereas in our case they only live off assets held against the government or the taxpayers (the domestic
agents). We could also allow for an independent stream of revenues without altering the results substantially.
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and

u2(c2
t , x

2
t ) =

(c2
t )

1−γ − 1
1− γ

+ ξ
(x2
t )

1−σ − 1
1− σ

. (15)

The form of the utility function for the leisure component for type-1 agents is irrelevant, since
they will always choose x1

t ≡ 1.9

We define v ≡ (h, gt,0 b1t ,0 b
2
t ,0 η

2
t ). By the theorems of section 2, the allocation, the policy, and

the price system in the Ramsey equilibrium will be functions of v. We will also denote gt = g(v)
and so on, where these are just selector functions that take the appropriate component of the
vector v.

We define e(v) to be aggregate private consumption in the Ramsey equilibrium. The theorems
and corollaries of section 2 established that in the Ramsey equilibrium aggregate consumption
must be a function of the mentioned variables only. Note that we dropped 0η

1
t since consistency

requires N1
0η

1
t + 0η

2
t = 0 ∀t ≥ 0 a.s.. We now show that, in a competitive equilibrium, knowing

e(v) is enough to infer uniquely the allocation, the policy, and the price system.
Using (8) we find that in a competitive equilibrium:

ci(v) = kie(v) ∀t ≥ 0 a.s. i = 1, 2, (16)

and the asset-pricing kernel is given by

p(v) = e(v)−γ ∀t ≥ 0 a.s. (17)

We can compute k1 from the budget constraint of the agents of type 1 after substituting (16) and
(17) and the definition of the measure m:

k1 =
[∫

(0b
1(v) +0 η

1(v))e(v)−γdm(v)
] [∫

e(v)1−γdm(v)
]−1

. (18)

Since aggregate private consumption is e(v) ≡ N1c1(v) + c2(v), we can compute k2 from the
requirement N1k1 + k2 = 1:

k2 = 1−N1k1. (19)

We use the market-clearing condition (6) to determine leisure:

x2(v) = 1− c2(v)−N1c1(v)− g(v) = 1− e(v)− g(v). (20)

We finally determine the tax policy using (7):

ξx2(v)−σ = (1− τ(v))c2(v)−γ

τ(v) = 1− ξ(1− e(v)− g(v))−σ(1−N1k1)γe(v)γ . (21)

The previous equations show that specifying aggregate private consumption is all we need to
characterize a competitive equilibrium, given the initial conditions. We now wish to establish
which functions e(v) are compatible with a competitive equilibrium. In order for this to happen,
the following must hold:

9Although the functional form we chose is different from that in Chari, Christiano and Kehoe [8], it is consistent
with their baseline preferences if we set γ = σ = 1 and ξ = 3.
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(i) Equations (16)–(21) must have a well-defined solution in the admissible range; if this hap-
pens, (7), (8) and (6) will be satisfied, and so will (4) for type-1 agents. In (16), we
need ci(v) ≥ 0 ∀t ≥ 0 a.s. i = 1, 2; this requires e(v) ≥ 0 ∀t ≥ 0 a.s. i = 1, 2
and ki ≥ 0 i = 1, 2, which can be rewritten as requiring k1 ∈ [0, 1

N1
]. We also need

x2(v) ≥ 0 ∀t ≥ 0 a.s., which requires e(v) + g(v) ≤ 1 ∀t ≥ 0 a.s..

(ii) Either (4) for type-2 agents or (5) must hold (the other one will hold by Walras’ law).

We will use the budget constraint of type-2 agents (4). Using equations (16)-(21), this con-
straint can be rewritten, after some algebra, as:

logξ + γ log(1−N1k1)

+ log
[∫

(1− e(v)− g(v))−σdm(v)−
∫

(1− e(v)− g(v))1−σdm(v)
]

− log
[∫

e(v)1−γdm(v)−
∫
e(v)−γ(N1

0b
1(v) +0 b

2(v))dm(v)
]

= 0.

(22)

We assume that, given {{(0η
i
t,0 b

i
t)}i=1,2}∞t=0, there exist functions e(v) that satisfy (i) and

(ii). Intuitively, this requires the rentiers not to be so poor that their wealth is negative under
any government policy, nor so rich that their wealth exceeds the value of the highest attainable
output net of government spending; it also requires government spending not to be too large and
the government not to be too heavily indebted against private agents. These requirements are
necessary for existence of a competitive equilibrium given the initial conditions and the spending
process.

Assuming thus that we have at least one competitive equilibrium, we wish to find now the
one that maximizes the objective function of the government, which is the Ramsey equilibrium.

Using (16)–(20) the expected utility of type-1 agents is:

U1 = (k1)1−γ
∫
e(v)1−γ

1− γ
dm(v), (23)

the expected utility of type 2 agents is:

U2 = (1−N1k1)1−γ
∫
e(v)1−γ

1− γ
dm(v) +

∫
(1− e(v)− g(v))1−σ

1− σ
dm(v), (24)

and the objective function of the government is thus

W =
[
ω1N1(k1)1−γ + ω2(1−N1k1)1−γ

] ∫ e(v)1−γ

1− γ
dm(v)

+ω2

∫
(1− e(v)− g(v))1−σ

1− σ
dm(v).

(25)

Condition 1 Either of these properties is met:

• γ ≥ 1 and there exists a policy that satisfies the government budget constraint (22) and
e > 0 a.s.; or:

12



• (gt, N1
0b

1
t +0 b

2
t ,0 η

1
t +0 b

1
t ) 6= 0 a.s.

Condition 1 is not very important for our results, but it is useful in ruling out e(v) = 0 as a
possible choice the government might consider in some cases.10

Theorem 3 Assume that there exists a solution to maximizing (25) subject to the constraints
(22), e(v) ∈ [0, 1 − g] and k1 ∈ [0, 1

N1 ]. Let ê(v) be any such solution. Assume condition 1
holds. Then ê, as a function of h, assumes almost surely at most two values for each value of
(gt,0 b1t ,0 b

2
t ,0 η

1
t ).

Proof. See Appendix.

While the proof of Theorem 3 is lengthy and requires dealing with several technical details,
the intuition behind the result is much simpler and more general. Both the objective function
and the constraint can be described as operators mapping the space of admissible functions e
into real numbers; if we consider them as a joint operator, they map an infinite-dimensional
space into a two-dimensional space. Since the dimensionality of the domain is much higher than
the dimensionality of the range, we expect the operator in general to be non-singular, i.e., local
perturbations around any e will be onto a neighborhood of the values attained at e. Whenever
this happens, it is then possible to find a local perturbation that improves on the objective
function without violating the constraint. Most of the local perturbations that we consider
involve increasing e by a differential amount de in a neighborhood of some value h1 for h and
increasing or decreasing it by some multiple of de in a neighborhood of some other value h2. If e
takes many values as a function of h, this leads to many degrees of freedom and the mapping is
nonsingular; but if e takes few values, then the effect of most of these perturbations is the same,
as there are few independent choices for the points h1 and h2. Theorem 3 shows rigorously what
“few values” means in our case: e can take at most 2 values as a function of h.

Theorem 3 is very important for searching numerically for Ramsey equilibria: it means that
the government will at most randomize (or alternate) between two tax rates for each value taken
on by the “fundamentals” of our economy.

We now look at the first-order conditions for the Ramsey problem to get some intuition for
the results we will discuss more through numerical examples. After some algebra, the first-order
condition for the function e can be written as:

ω2
[
(k2)−γe(v)−γ(k2 +N1k1)− ξ(1− e(v)− g(v))−σ

]
+
[
(ω1(k1)−γ − ω2(k2)−γ)(0b

1(v) +0 η
1(v)− k1e(v))

]
e(v)−γ−1N1γ

+
N1γλ0

k2I1

[
k1e(v)−γ + γe(v)−γ−1(0b

1(v) +0 η
1(v)− k1e(v))

]
+

λ0

I4 − I3

[
σ(1− e(v)− g(v))−σ−1 + (1− σ)(1− e(v)− g(v))−σ)

]
+

λ0

I2 − I1

[
γ(N1

0b
1(v) +0 b

2(v))e(v)−γ−1 + (1− γ)e(v)−γ
]

= 0 a.s.,

(26)

10Although I conjecture Theorem 3 holds in its present form even without condition 1, I was not able to prove
it. It is however possible to prove a slightly generalized form, where e can take 0 as a third value in the states in
which (gt, N

1
0b

1
t +0 b

2
t ,0 η

1
t +0 b

1
t ) = 0.
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where λ0 is the Lagrange multiplier associated with the constraint (22), and I used the following
definitions:

I1 ≡
∫
e(v)1−γdm(v); (27)

I2 ≡
∫

(N1
0b

1(v) +0 b
2(v))e(v)−γdm(v); (28)

I3 ≡
∫

(1− e(v)− g(v))1−σdm(v) (29)

and

I4 ≡
∫

(1− e(v)− g(v))−σdm(v). (30)

Equation (26) has the following interpretation. The first line is the derivative of the Negishi-
aggregated utility function of the two agents at the equilibrium wealth levels; these terms would
thus give us the undistorted, first-best solution. The second line describes distortions the govern-
ment introduces to redistribute resources across agents:11 ω1(k1)−γ − ω2(k2)−γ measures, up to
a constant, the value to the government of transferring one unit of resources from the taxpayers
to the rentiers; 0b

1(v) +0 η
1(v)− k1e(v) measures whether for the considered state v the rentiers

are consuming more or less than what they are entitled to based on the maturing financial claims
they start with. For example, let both ω1(k1)−γ − ω2(k2)−γ and 0b

1(v) +0 η
1(v)− k1e(v) be pos-

itive. This means that the government would like to transfer more resources from the taxpayers
to the rentiers, if it could do so by means of lump-sum transfers. Furthermore, in the state v the
rentiers are net sellers of goods. In this case the government has an incentive to reduce aggregate
consumption in the state v; by doing so, the government distorts upwards the price of goods in
such states, which increases the wealth of the rentiers.

The remaining terms capture the distortions the government introduces because of the price
effects on its budget constraint. These terms are harder to interpret, as more effects come into
play. It is easy to show however that λ0 measures the marginal benefit of being able to substitute
lump-sum taxes for distortionary taxes.

5 Numerical Examples

In this section we analyze the characteristics of the Ramsey equilibria of the two-class economy
by looking at some numerical examples.

In all the examples I present, I chose the following parameters: γ = 2, σ = 1.1, β = 0.95,
N1 = 1.

I tried different values for all of these parameters, but this did not alter the results significantly.
Only the magnitude of changes in the interest rate will be greatly amplified by choosing higher
values for the risk aversion.

In each case we can trace the entire Pareto frontier by parameterizing (ω1, ω2) = (α, 1 −
α), α ∈ [0, 1].

11This term corresponds to what Persson and Svensson [15] call an “optimal intertemporal tariff” in the open
economy setup.
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5.1 Example 1: No Government Spending

Let gt ≡ 0 ∀t ≥ 0, 0b
i
t ≡ 0 ∀t ≥ 0 i = 1, 2, 0η

i
t ≡ η̂i0 i = 1, 2. In this example the government

has no public spending to finance and no debt to repay (nor credit to distribute). Furthermore,
the only outstanding private claims are annuities that pay a fixed amount every period.

In this setup the government has no need to raise taxes ever; in a representative-agent model,
the government would achieve a first best by setting τt ≡ 0 ∀t ≥ 0. With this tax policy, we
would have:

c1
t = η̂1

0 ∀t ≥ 0; (31)

u2
c = u2

x ∀t ≥ 0 (32)

and

c2
t + x2

t = 1 + η̂2
0 ∀t ≥ 0. (33)

Equation (32) comes directly from (7) and describes the allocation of resources between leisure
and consumption given that labor income is not taxed.

Equation (33) states that in each period the sum of each agent’s consumption and leisure
is equal to her time endowment and the income (which may be negative) from the annuities
she holds. The price system in this competitive equilibrium is pt = 1 ∀t ≥ 0. Given this price
system, the choice of a constant profile of consumption and leisure implied by (31)–(33) is optimal,
as it is implied by (8); furthermore the budget constraints of each agent (4) are satisfied, and so
is the market clearing condition (6), provided η̂1

0 = −η̂2
0, which is required by (3).

This competitive equilibrium is associated with a function e(v) which is constant. By forming
the Lagrangean of (25) subject to (22), it is easy to check that the choice of a constant e satisfies
the first-order conditions for an optimum even with heterogeneous agents.

While the no-tax solution always satisfies the first-order conditions in this example, it is not
the optimal solution when the rentiers have a sufficiently large weight in the government. To
understand why this is the case, we concentrate on the welfare of the rentiers.

Let us consider deviations from the no-tax policy that involve one tax rate in all even periods
and another one in all odd periods.12 Figure 1 shows what happens in this case. The no-tax
solution is represented by the point C0: the rentiers consume in each period exactly the amount of
resources they are owed by the taxpayers, i.e., c1

t = η̂1
0 ∀t ≥ 0. The line from A0 to B0 represents

the Arrow-Debreu budget constraint of the rentiers in the no-tax policy: since pt = 1 ∀t ≥ 0, its
slope is − 1

β , as we assume the first period to be even (period 0). The indifference curve through
C0 is tangent to the budget constraint, reflecting the optimality of C0 when the pricing kernel is
constant. Suppose now the government varies the tax rates in odd and even periods. The rentiers
are not affected directly by the change in the tax rate; they are only affected indirectly, as different
tax rates lead to different relative prices between odd and even periods. As a consequence the
budget constraint of the rentiers rotates, e.g., to A1, B1; however, it still goes through C0, as
c1
t = η̂1

0 ∀t ≥ 0 is always feasible. Since the utility function is assumed to be strictly concave,
the indifference curves are strictly convex, and the rentiers are strictly better off when the relative

12As we argued previously, this policy is equivalent to a policy that sets two different constant tax rates depending
on whether h is larger or smaller than β

1+β
.
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price of goods varies in either direction: the new choice is C1, which lies on a higher indifference
curve. This welfare improvement is locally of second-order magnitude, and this is why the no-tax
policy satisfies the first-order conditions.

By taxing labor in odd periods and subsidizing it in even periods (or vice versa), the govern-
ment generates an artificial scarcity of some goods with respect to others, and this is beneficial to
the rentiers. Of course, this policy is very costly to the taxpayers. In the economy we consider,
if the government were allowed to transfer resources directly between the two agents, it would
never choose to distort prices, as a constant consumption stream for both agents would be Pareto
efficient. The taxpayers, therefore, pay both for the gains of the rentiers and for the distortions
introduced by taxes and subsidies. These losses are also of second order in a neighborhood of the
no-tax policy.

To compute when the government would resort to randomization, I solved numerically for
the optimal policy. Based on my computations, choosing different tax rates when all exogenous
variables (government spending and maturing coupons) are the same is a very costly way of
redistributing wealth among the agents. For instance, consider a case in which 0η

1
t = −0η

2
t =

1/3 ∀t ≥ 0 and ξ = 3γ−σ. In this case taxpayers and rentiers reach the same consumption when
the government implements a no-tax policy. Deviating from this policy becomes desirable for the
government only when the Pareto weight of the rentiers exceeds 0.65, i.e., approximately when
the government gives to the rentiers twice the weight attributed to the taxpayers.

5.2 Example 2: Constant Government Spending

This example is identical to Example 1 except that we consider now a positive level of government
spending: Let gt ≡ ĝ ∀t ≥ 0, 0b

i
t ≡ 0 ∀t ≥ 0 i = 1, 2, 0η

i
t ≡ η̂i0 i = 1, 2. In this example there

is still no uncertainty, public spending is constant, and private agents are still trading only in
annuities, so there is still a solution to the first-order conditions that implies the same allocation
in all periods. The only difference with Example 1 is the fact that now the government has to
resort to distortionary taxation to finance a stream of spending.

When the Ramsey equilibrium of this model implies a competitive equilibrium with a constant
allocation over time, we can solve for the allocation using the following equations:

u2
x(c2, x2)
u2
c(c2, x2)

= 1− τ ; (34)

c2 + η̂1
0 = (1− τ)(1− x2); (35)

c1 = η̂1
0 (36)

and

τ(1− x2) = g. (37)

In this example we have one more equation than we had in the previous one, since we need to
find the tax rate that allows the government to finance its expenditures in each period.

In the tax-smoothing policy the government sets a constant tax rate exactly sufficient to raise
revenues covering public spending; the consumption of each private agent is equal to post-tax
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labor income plus the coupons from the annuities she owns (which may be a negative amount if
she is short on the annuities).

The same considerations as in Example 1 hold when the government considers a deviation from
the tax-smoothing policy. Figure 1 still represents what happens to the welfare of the rentiers.
It is again true that the rentiers receive a second-order benefit and the taxpayers a second-order
loss from local deviations from tax smoothing.

We now turn to more-interesting examples, where government spending is not constant. In
this case, deviations from the policy that minimizes distortions will bring about costs that are
locally second-order but distributional benefits that are potentially first-order, so government
policy will be affected to a much larger extent.

The algorithm I used in the numerical simulations proceeds as follows. Given an example, we
first specify what are the possible values that

ṽ ≡ (gt,0 bit,0 η
1
t ,0 η

2
t ) (38)

can take at any date and in any state. We will restrict this to be a finite number of possibilities.
Let (v1, . . . , vM ) be the possible values for ṽ.

In this case, the integrals in (25) and (22) become finite sums.
Then the algorithm computes the first-order conditions for the problem of maximizing (25)

subject to (22). The algorithm solves for the best policy that does not involve randomization
between tax rates when the value of ṽ is the same; it then checks whether the second-order
conditions are satisfied locally, and it also checks whether the optimum achieved is preferable
to all points on a (coarse) grid spanning all the admissible 2-point random policies. I present
here the solutions only for the range in which the optimal policy does not involve randomization;
this happens if the Pareto weight of the rentiers is not too large.13 The policies the government
would follow in the range where the Pareto weight of the rentiers is very high are empirically
implausible.

In the following example we illustrate what happens when government spending is not con-
stant.

5.3 Example 3: “France vs. Britain”

This example is suggested by an observation in Sargent and Velde [18] about war financing in
France and Britain in the 17th and 18th centuries. The clearest description of the difference
between the two regimes is their quote of Montyon, a senior civil servant in the French Finance
Ministry in 1770s. He pointed out that

Great Britain finances by taxation neither all nor part of the costs of war, it finances
them by loans (...). In wartime it is our habit to increase taxes (...). Indeed in
wartime the country suffers enough from the labor withdrawn from agriculture and
manufactures to be sent into the army, the navy, and into the production activities
necessitated by war.

13When randomization is desirable, I found that in many examples there is no optimal policy: the government
will achieve the supremum by driving the tax rate to 1 with probability ever closer to 0.
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Montyon wrote to express his dissatisfaction with the French policies. As Sargent and Velde
argue convincingly, that dissatisfaction was one of the factors that led eventually to the French
revolution.

France and Britain had very different political regimes at that time; the noble class had much
more clout in France than in Britain. In terms of our model, we interpret this as meaning that
the rentiers had a higher Pareto weight in France than in Britain.

In this numerical example the government has thus to finance a war. I consider a single
war, starting in period 2 and lasting 6 periods (years).14 Peacetime government spending is 0.2,
whereas wartime spending is 0.4.15

Figures 2-3 show the Ramsey allocation depending on the Pareto weight of the rentiers in
the range where the government does not wish to randomize its policy.16 Note that the figures
plot the allocation during peacetime and wartime only: the peacetime allocation is going to be
the same in the periods preceding the war and in all periods following the war, and the wartime
allocation will be the same in all war periods.

The main conclusion that these pictures suggest is that the optimal way of financing a war is
definitely influenced by the attitude of the government with respect to redistribution. Further-
more, the effect is consistent with the mentioned pattern of war finance in Britain and France: a
government run by the taxpayers will run large deficits in wartime, whereas the preferred policy
for the rentiers involves a large increase in taxes during the war.

The intuition of this result is the following. Sooner or later, a war will have to be financed
in this model by raising funds through taxes. This means that, implicitly (i.e., through the
government) or explicitly (i.e., through direct transactions) the taxpayers will have to borrow
from the rentiers to smooth their consumption stream. When the government “sides with the
taxpayers,” it will try to get the best possible deal to raise the funds it needs. This can be achieved
by distorting prices so that the price of the consumption good is kept low during wartime relative
to peacetime. To achieve this, the best strategy for the government is to run a huge deficit by
cutting taxes during the war. The deficit is then covered by increasing taxes during peacetime
and gradually repaying the large debt accumulated during the war. When the government is
influenced more by the rentiers, it will respond to a war by running a much smaller deficit and
having a higher tax rate during wartime. The scarcity of goods will then be more acute. The
rentiers will pay a lower interest rate on the war chest being built before the war and will demand
a higher interest rate on the debt they subscribe during wartime.

The vertical dotted line shows the policy chosen by a government whose ratio of the Pareto
weights coincides with the ratio of the marginal utilities of the two agents. For such a government,
there is no incentive at the margin to redistribute wealth; its policy is thus just dictated by
efficiency considerations. For the preferences we specified, this policy implies higher taxes in

14We could have considered a stochastic process for wars and peaceful periods, but this would not have altered
the results. The quantitative results are actually very similar to the ones of a model where there is a Markov
process for war and peace, with the average war lasting 6 periods, peace as the initial condition, and the invariant
distribution attributing probability .7 to peace.

15The other parameters I chose are the following: ξ = 4γ−σ, 0η
1
t = 0.25 ∀t ≥ 0 a.s..

16The government will randomize its policy when the Pareto weight of the rentiers is really large, but this range
does not produce empirically plausible predictions. When the government has such a high desire to redistribute
wealth from the taxpayers to the rentiers, it is likely that it will try to adopt alternative, less-costly schemes.
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wartime.17 In our case, the “neutral” wartime deficit would thus be only 30% of the cost of the
war; the associated tax rates are 33% in peacetime and 43% in wartime. When the taxpayers
have all the weight, the government finances 71% of the war by issuing debt, and the tax rate is
lowered sharply when a war occurs: the tax rate in this case is 39% in peacetime and only 32%
in wartime.

We saw that in Examples 1 and 2 the optimal tax policy is unaffected by the different Pareto
weights the government can attach to the agents over a large range. That happened because in
the Ramsey policy neither agent was “borrowing” in some state and lending in some other state;
the rentiers were consuming exactly their “endowment” stemming from the maturing coupons on
the annuities, and the taxpayers were consuming their proceeds from labor supply net of taxes
and the coupon payment on the annuities. Because of this, deviating from the Ramsey policy had
only second-order distributional effects. In Example 3, this is no longer the case. The rentiers are
now lending to the taxpayers in wartime and being repaid in peacetime. Figure 3 shows that their
consumption is below the level implied by their coupons in wartime, and it is above in peacetime.
A change in the relative tax rates the government applies during the war and in peace brings thus
first-order distributional effects. Because of this, the optimal tax rates change when the Pareto
weights change.

The rightmost part of the graphs, showing the Ramsey allocation when the Pareto weight of
the rentiers is very high, gives results that may be empirically irrelevant but illustrate well the
forces at work. When the government has a strong desire for redistributing wealth in favor of the
rentiers, it may even run a surplus during wartime, raising the tax rate to a level that will cause
extreme scarcity of goods during wartime. The taxpayers will then have to borrow at extremely
bad terms, giving up substantial rights to future consumption.

At the extreme opposite, when ω1 = 0, we have the open-economy solution, in which the
taxpayers are interpreted as being the domestic agents and the rentiers are the foreign agents.
As Persson and Svensson [15] suggest, in an open economy a negative shock such as a war is
absorbed by a trade deficit. In deciding the optimal tax plan, however, the government takes into
account that a larger trade deficit implies a worse relative price of current imports against future
exports that will offset the current deficit. It therefore has an incentive to abandon the tax plan
that minimizes tax distortions to reduce strategically the size of the trade deficit and improve the
terms of trade. Accordingly, the optimal plan calls for the government to reduce taxes and run a
large budget deficit during the war to stimulate output.

We have so far argued that the volume of public borrowing in France and Britain was consistent
with the qualitative predictions of the model. It would be interesting to examine whether the
other predictions are consistent with the data. In particular, we would predict that the real
interest rate during the war was higher in France than in England, both for private and for public
loans; we would also predict that, compared with Britain, France had a larger flow of financial
resources from the rentiers to the taxpayers in wartime and a much larger flow from the taxpayers
to the rentiers in peacetime.

While in principle these hypotheses are empirically testable, in practice the available data do
not allow sharp conclusions.

Velde and Weir [22] show that France paid substantially higher interest rates than Britain did;
however, France also defaulted frequently on its debt. They also show that observed interest rates

17The tax choice that minimizes distortions requires equality of the marginal tax distortions across states. De-
pending on the preferences, this may imply higher or lower taxes during wartime. See Lucas and Stokey [13].
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on government debt oscillated mainly in anticipation of government defaults. The appropriate
comparison for our purposes should thus adjust the interest rates for the expected defaults. There
seems to be evidence that the premium paid by France was more than enough to offset the default
risk, with the exception of the Law Affair.18 Further research is required though to study whether
the interest rates, net of the default premium, were higher in France than in Britain in wartime
and lower in periods preceding a war.

As for the private credit markets, there are very few studies on microeconomic data that
would allow us to distinguish flows between social classes. Rosenthal [17] studies credit in a rural
area, where the shocks to local agriculture seem to be much more important than wars or other
government intervention. Wars seem much more important for Paris,19 but yearly data have been
estimated only for aggregate series. The aggregate volume of credit is not a good measure of the
series we are interested in because the net position of the different social classes on the market
was about even.20

5.4 Example 4: “Taxation over the Business Cycle”

The following example looks at the optimal policy in presence of small shocks, such as the ones
that may arise over the business cycle. We are interested in this example because it allows us to
evaluate the impact of a balanced-budget constraint that requires the government to raise enough
taxes in each period to pay for current spending.

To model a business cycle, we should slightly alter our setup and allow for shocks on the
income (or productivity) process. In a recession, a given tax rate would then lead to smaller
output and smaller revenues. For our purposes, this has an effect that is equivalent to an increase
in government spending, which reduces output available for private consumption and increases
the need for the government to raise revenues.21 We assume thus that government spending
follows a Markov process with support on two values: 0.23 in booms and 0.26 in recessions. We
calibrate the transition probabilities so that the average boom lasts 4 periods (years) and the
average recession lasts 2 periods.22 We assume the economy starts in a boom period, with no
government debt.

The results from this simulation are presented in Figures 4-5.23 While the results are quali-
tatively similar, the response to such a small shock is quite modest over most of the range. At
the policy chosen by the government that is neutral with respect to distributional issues (the
“neutral” policy), the tax rate is 33.3% in booms and 34.6% in recessions, and the deficit is about

18Cf. Hoffman, Postel-Vinay and Rosenthal [11].
19Cf. Hoffman, Postel-Vinay and Rosenthal [10].
20Had this not been the case, we could have estimated the flows from measures of aggregate volume of credit.

For example, suppose that aristocrats were mainly lending, whereas the bourgeois were mainly borrowing. In this
case, we would have expected the bourgeois to borrow even more in wartime, thereby increasing the size of the
aggregate volume of private credit. The reverse effect would have arisen if the bourgeois had been the lenders.

21I ran a numerical simulation where productivity was allowed to vary and the results were similar; I stick to a
government-spending shock in this version in order to be consistent with the notation in the rest of the paper.

22All other parameters are the same as in Example 3.
23Labor supply is higher in “recession” than in boom because in our case a recession is interpreted as an increase

in government spending. If we considered an example where the recession is dictated by a reduction in productivity,
the labor supply would be lower in recession than in boom; however, all the other variables would behave in the
same way as in Figures 4 and 5, and especially the optimal tax policy would have the same characteristics as the
one described in Figure 4.
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one third of the spending increase; the policy preferred by the taxpayers implies a deficit that is
twice the size of the neutral policy; the tax rate for this policy is 34.1% in booms and 33.1% in
recessions.

While the choice of an intertemporal tax policy cannot do much to benefit the taxpayers, it
still can hurt them substantially. However, this would happen only if the government ran large
deficits during booms.

Let us now consider the effect of a balanced-budget restriction on the government. As we
see from Figure 4, compared with the neutral policy, a balanced-budget policy slightly favors the
rentiers. If business cycle shocks were the only source of fluctuations in government revenues
and expenses, a balanced-budget requirement would imply very modest costs and benefits for the
agents in the economy: in our example, the rentiers would achieve a benefit of 0.02% of their
consumption, while the taxpayers would incur a loss of about 0.03% of their consumption.

However, the government balance may be subject to much larger shocks from other sources.
For instance, the aging of the population implies a large increase in spending for pensions and
publicly-subsidized medical expenses. These shocks evolve much slower than wars or the business
cycle, but they have an impact that may be as large as those caused by wars. It is therefore likely
that the intertemporal choices on taxation may imply a much larger distributional conflict than
the small business-cycle shocks. An important feature of these alternative shocks is that they
often involve transfers that are at least partly discretionary. To properly consider them, it will
thus be necessary to endogenize government spending, which is left for future research.

6 On Uniform Commodity Taxation

In a seminal paper on optimal taxation in a static environment, Atkinson and Stiglitz [2] (A-S from
now on) provide conditions under which it is inefficient to distort relative prices for redistribution
purposes.

The purpose of this section is to contrast their results with ours.
Due to the presence of complete markets and the Ramsey assumption on the timing of the

government policy, we can view the consumption good at different dates and in different states
of the world as many different commodities, to which the results on optimal taxation in a static
framework can be applied. A-S show that access to a sufficiently flexible income tax schedule is
enough to guarantee optimality of a uniform commodity tax if preferences are (weakly) separable
in leisure and the other goods. When the subutility from the other goods is the same for everybody
and it is homothetic, a uniform commodity tax is optimal in their environment. The preferences
we assumed in sections 4 and 5 satisfy this requirement.

While there is no reason to think that uniform commodity taxation would be optimal in the
general environment of section 3, the additional assumptions made in sections 4 and 5 lead us
much closer to an environment where it is optimal to tax all goods at the same rate. As I explain in
more detail in the appendix, our income tax plays both the role of a tax on a factor of production
and that of a tax on a commodity; this is due to the fact that there is no substitutability in
production between goods and/or factors in different periods and states of nature.

The appendix shows that a constant tax on labor income is not optimal even in the environ-
ment I described in sections 4 and 5 for the following reasons.

(i) In A-S, leisure is just one good. In our dynamic environment, there are many types of
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leisure, one for each time and state of nature. The taxpayers are endowed with one unit
of each type of leisure, but consume different amounts of the various types when the labor
supply is not constant. Because of this, a uniform tax on all factors of production will not
be optimal. The deviations from a constant tax that we obtain through this channel are
similar to what happens in L-S and in other papers that have looked at dynamic optimal
taxation in a representative-agent framework.24

(ii) In A-S, no private agent starts with an initial endowment of any good except her time. This
is sometimes justified by assuming that the government can seize the initial endowment of
any good, except time; however, this hypothesis is not equivalent to the former and would
not always imply uniform commodity taxation. We assumed instead that the government
and the private agents start with some initial level of financial claims that cannot be taxed
away directly. If we had not assumed this, in our case the government would have been
able to achieve lump-sum redistribution merely by taxing or subsidizing the initial credit or
debit positions. Differences in the initial endowment of goods over time and across states
play a very important role in our analysis: the government will distort prices to increase
the value of the initial endowment of the group it wants to favor. In our setup, the initial
endowment is given by the time of the taxpayers and the initial financial claims for both
groups.

The appendix also shows that ruling out lump-sum taxes and transfers is not a reason for our
deviations from a uniform tax. My paper treats the two classes of households as homogeneous and
does not deal with distribution issues within any given class; lump-sum taxes and transfers would
affect the distribution within classes much more than the price distortions I study here, and this is
the reason I focus on price distortions as the main channel of redistribution across different classes.
Nonetheless, the qualitative results are similar if lump-sum transfers are allowed.25 Lump-sum
transfers would be desirable as a way of transferring resources from the taxpayers to the rentiers,
and would be used if the government wished to redistribute resources from the taxpayers to
the rentiers. However, due to the reasons in (ii), it would still be optimal for the government
to deviate from uniform commodity taxation and use price distortions whenever the lump-sum
transfers have to be financed through distortionary taxes. When lump-sum transfers are admitted,
the magnitude of the price distortions that the government optimally uses to redistribute from
the taxpayers to the rentiers is smaller, and we would not observe the extreme results that we
get in section 5 for this case.

7 Time Consistency of the Optimal Fiscal Policy

In the previous sections we have characterized Ramsey equilibria that arise when the government
commits to its policy at time 0 and is never allowed to revise it. In this section we consider a

24A-S’s result in the case of heterogeneous agents is connected to what they established in a previous pa-
per (Atkinson and Stiglitz [1]), where they provided conditions that lead to uniform commodity taxation in a
representative-agent environment where lump-sum taxes are ruled out. Separability and homotheticity play there
the same role they play in their later paper.

25The introduction of lump-sum taxes would instead have a large impact: over a large range of parameter values,
the government would be able to raise revenues much more efficiently. However, even in this case some price
distortions would be optimally used.
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different environment, where the government chooses its policies sequentially. We provide some
sufficient conditions that ensure time consistency of the Ramsey policy when the government
chooses sequentially. This exercise is similar to section 2.4 in L-S and to sections III-V in Persson
and Svensson [15]. As in their papers, we maintain the assumption that the government is
committed to repay its debt obligations, but it can choose sequentially the tax rate on labor
income.

In a representative-agent, non-monetary economy, L-S show that a sufficient condition for
ensuring time consistency of the Ramsey policy is that the government be allowed to choose an
appropriate structure for its debt. At each point in time, the government will have to readjust
its portfolio of state-contingent bonds across different maturities and different risk profiles.

Persson and Svensson [15] extend that theory to an environment with an open economy. They
show that, when private capital is perfectly mobile, the maturity structure of government debt
that ensures time consistency will depend on the maturity structure of net private claims against
the rest of the world.26

Our result is similar to that of Persson and Svensson. In general, there is a structure of
government debt that ensures time consistency. However, this structure depends on who is
holding the debt and on the structure of private claims traded by the taxpayers and the rentiers.
Time consistency will thus require the government to react to the arrangements in the private
capital markets.

Since we are only interested in providing sufficient conditions for time consistency, we will
compute a new Ramsey equilibrium starting from period 1 and check whether this coincides with
the time-0 Ramsey equilibrium in any possible state of the world at time 1. If this happens, then
the Ramsey equilibrium is time consistent, as argued in L-S.27

The first step for our analysis is to describe the evolution of the economy when policy decisions
are taken sequentially. We therefore introduce a dynamic budget constraint for the agents and
the government. In our previous sections we relied only on the single budget constraint at time 0;
this was justified because dynamics were irrelevant in an Arrow-Debreu economy, where we could
simply reinterpret the same good at different dates as many different goods, and the tax rates in
different dates and states as tax rates on different production processes leading to different goods.

We will assume that there are complete contingent markets at each date and in each state; this
is a much stronger assumption than market completeness. It implies that at any moment the entire
set of contingent claims is open. While this provides the private agents with redundant securities,
we will see that this is crucial for the government to be able to guarantee time consistency of the
Ramsey equilibrium. Trading in financial markets happens in every period after gt (but before h
is revealed at time 0), i.e., at the same time as production takes place.

The sequential budget constraint of type i agents at time 0 is the following:

p0[ci0 −0 η
i
0 − wi(1− τ0)(1− xi0)]− E0

∞∑
t=1

βt
{
pt[1bit +1 η

i
t −0 b

i
t −0 η

i
t]
}

= 0. (39)

26The result I mentioned is contained in the section where perfect capital mobility is allowed. This is the relevant
case for our analysis, since the rentiers (the foreigners, in the limiting case of an open economy) and the taxpayers
(the domestic agents) trade in perfect capital markets.

27It is possible to show that this condition is necessary and sufficient for the Ramsey equilibrium to be a Markov
equilibrium.
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Equation (39) states that the time-0 value of the financial assets maturing at time 1 or later that
agent i owns at the end of period 0 must exceed their value at the beginning of time 0 by an
amount equal to gross savings at time 0, defined as the sum of labor income and maturing assets
minus current consumption. Each agent will also face a transversality condition, requiring:

lim
s→+∞

∞∑
t=s

βtpt[sbit +s η
i
t] = 0 a.s. (40)

This is equivalent to requiring the agent to meet in each period the budget constraint in the
Arrow-Debreu form. For period 1, this requires:

E1

∞∑
t=1

βtpt
[
cit −1 b

i
t −1 η

i
t − wi(1− τt)(1− xit)

]
= 0 a.s. (41)

In an Arrow-Debreu economy we only require clearing in the market for state-contingent goods.
Since we now deal explicitly with the trade in financial assets, we also need a market-clearing
condition in the markets for assets:

N∑
i=1

1η
i
t = 0 ∀t ≥ 1 ∀gt. (42)

The government will also have a dynamic budget constraint and a transversality condition.
However, as long as the budget constraints and the transversality conditions of all other agents
are met, the government ones will be met automatically, so they are redundant for our purposes.

Let {(c1
t , c

2
t , x

2
t )}∞t=0 be the Ramsey equilibrium allocation as of time 0. Suppose now that the

government is given at time 1 the (unexpected) opportunity to revise its policies. We wonder
under what circumstances the optimal choice would be not to revise the previous plan. To answer
the question, we compute the first-order conditions as of time 1, as well as the constraints the
government faces. We inquire whether it would be possible for the time 0 Ramsey allocation to
satisfy the constraints and the first-order conditions.

As in L-S, we will rely on the first-order conditions to look at the optimal policies as of period
1. From the previous sections we know these conditions may not be sufficient. In the numerical
examples, we therefore check whether the solution we find is indeed an optimum.

The Ramsey problem the government would face as of time 1 can be rewritten exactly as we
did in section 3 for the time-0 problem. There will be a new measure for government spending
and coupons: because one period is passed and possibly some uncertainty has been revealed, the
process for government spending the economy starts from is now different; coupon payments on
financial claims may be different for the same reason, and they may also be different because the
government and the private agents may have reshuffled their portfolios during period 0.

The new vector describing the economy is 1v ≡ (h, gt,1 b1t ,1 b
2
t ,1 η

2
t ,0 b

1
t ,0 b

2
t ,0 η

2
t ). If we were

simply solving for the time 1 Ramsey problem, the time-0 financial commitments (0b
1
t ,0 b

2
t ,0 η

2
t )

would not matter. However, our goal is to establish when the time-0 Ramsey allocation coincides
with the solution to the Ramsey problem at time 1. Since the optimal allocation as of time 0
depends on (0b

1
t ,0 b

2
t ,0 η

2
t ), it is useful to retain these variables in our “state.” Their effect at time

1 will of course have to be mediated through other variables, notably the financial commitments
in place at the beginning of period 1, i.e., (1b

1
t ,1 b

2
t ,1 η

2
t ).
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The new relevant measure as of time 1 will thus be defined by:

m1(A) ≡
∞∑
t=0

βtProb
(

(gt,1 b1t ,1 b
2
t ,1 η

2
t ,1 b

1
t ,1 b

2
t ,1 η

2
t , h)

)
∈ A ∀A ∈ G × B7. (43)

The Ramsey problem as of time 1 is thus:

max
e,1k1

[
ω1N1(1k

1)1−γ + ω2(1−N1
1k

1)1−γ
] ∫ e(1v)1−γ

1− γ
dm1(1v)

+ω2

∫
(1− e(1v)− g(1v))1−σ

1− σ
dm1(1v)

(44)

s.t.

ξ(1−N1
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1)γ
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=
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∫
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2(1v))dm1(1v),
(45)

with

1k
1

[∫
e(1v)1−γdm1(1v)

]
=
[∫

(1b
1(1v) +1 η

1(1v))e(1v)−γdm1(1v)
]
. (46)

Equation (46) is the budget constraint of the rentiers. When we solved the problem at time 0,
we substituted it into the objective function. In this case it will be more convenient to treat it as
a constraint with its Lagrange multiplier. It is also more convenient not to take the logarithm in
the constraint (45).28

The first-order conditions for this problem are:[
ω1N1(1k

1)1−γ + ω2(1−N1
1k

1)1−γ
]
e(1v)−γ − ω2ξ(1− e(1v)− g(1v))−σ
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1k

1)γ
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]
+λ1

[
(1− γ)e(1v)−γ + γ(N1

1 b
1(1v) +1 b
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−γµ(1b
1(1v) +1 η

1(1v))e(1v)−γ−1 − (1− γ)µk1e(1v)−γ = 0 a.s.
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and[
ω1N1(k1)−γ − ω2N1(1−N1k1)−γ

]
1I1 + λ1ξN

1γ(1−N1
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·
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]
− µ 1I1 = 0,

(48)

with 1k
2 = 1−N1

1k
1 and

1I1 ≡
∫
e(1v)1−γdm1(1v). (49)

28The formulation we used for the time-0 problem is more convenient when we have to solve for e; now we want
instead to establish when a given solution for e can be supported for an appropriate choice of other variables. The
form we choose here is convenient because the first-order conditions and the constraints are linear in (1b

1
t ,1 b

2
t ,1 η

2
t ).
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Here λ1 is the Lagrange multiplier associated with the constraint (45), and µ is the Lagrange
multiplier associated with (46).

In our model, as in L-S, the potential for time inconsistency stems from the distortions the
government introduces. The distortions that it is optimal to introduce at time 1 are in general
different from the ones that were optimal at time 0.

In L-S the only potential source of such distortions arises from the budget constraint of the
representative agent. If the structure of debt is not chosen appropriately, the government will in
general set a new tax policy to distort the price system in its favor. With heterogeneous agents
we may have a second source due to the constraint that in a competitive equilibrium all agents
must have the same marginal rates of substitution across goods in different dates and states. The
government can only distort the price system faced by each of the private agents in the same way;
as this leads to a worse outcome, the government will in general be tempted to revise its policy
to achieve further redistribution.

While there are two sources of time inconsistency in our setup, the government’s tax instru-
ments remain the same as in L-S. This will be important in generalizing their findings.

We are now ready to state the main result of this section.

Result 1 To ensure time consistency of the Ramsey policy, it will be sufficient in general for the
government to be able to adjust during time 0 one of the three bilateral positions 1b

1
t , 1b

2
t , or 1η

2
t

after having observed the two others.

As a first step in establishing our result, notice that we need only to check whether the
government will optimally choose the same function e at time 1 as it did at time 0. If this
happens, then the allocation, the price system, and the government policy will be the same. To
see this, we will repeat the same steps which led us to the formulation of the time-0 Ramsey
problem as one of maximizing (25) subject to (22).

We start by observing that the price system will have to be the same if e is the same, because
the price system is still determined by equation (17). Given that the price system is the same as
the one implied by the time-0 Ramsey equilibrium, the consumption of the rentiers will be the
same as well, since the optimal plan of the rentiers is uniquely determined by the price system.
It follows thus that k1 =1 k

1, which in turn implies that k2 =1 k
2 and that the consumption of

the taxpayers must be the same. Equations (20) and (21) establish then that leisure and the tax
rate must also be the same as in the time-0 Ramsey equilibrium.

Up to the first-order conditions, all the government needs to do to guarantee time consistency
of its policy is to trade in financial claims, or affect private trade in financial claims, in such a
way that equations (45), (47), and (48) are satisfied at time 1 almost surely.

Equation (45), as (22), is derived from the budget constraint of the private agents. Equations
(39) and (40) imply that the agents will trade in such a way that their present-value budget
constraint as of time 1 (equation (41)) is always satisfied; it follows that, if the government
does not unexpectedly change its choice of e, the constraints (45) and (46) will automatically be
satisfied. In order to have an equilibrium, however, the government must pick 1b

1
t and 1b

2
t so that

its budget constraint is satisfied, which is given by the following:
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]}

= 0. (50)
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In the representative-agent setup of L-S, there is a unique debt structure that ensures that the
time-0 Ramsey allocation satisfies the first-order conditions as of time 1 as well. This structure is
such that it leaves the government with exactly no incentives (at the margin) to revise the policy
laid out at time 0.

By looking at equation (47), we can immediately notice two main differences with the rep-
resentative-agent economy. First, in our case the government can try to influence more than one
debt structure. In general, all the bilateral positions 1b

1
t , 1b

2
t and 1η

2
t will matter for the first-order

condition of the government. Second, if some of these variables are beyond the control of the
government, it is necessary for the government to be able to observe or correctly anticipate them
and to react accordingly in order to assure time consistency.

Now, let λ1 and µ be given. Then equation (47) is a linear equation in each of the bilateral
positions, and can be solved for each position given the others, provided the coefficient on each
position is nonzero. We will later discuss in more detail when these coefficients might be zero.
We can thus derive one of the bilateral positions as a function of λ1, µ , and the other positions.
However, this solution will not satisfy the budget constraint of some of the agents and the first-
order condition (48) for generic values of λ1 and µ. We will then need to find a value for the
multipliers λ1 and µ such that the budget constraints and (48) are satisfied. This requires solving
two nonlinear equations in two unknowns. In the computer simulations I ran (see below), such a
solution always existed.29

To illustrate these results more concretely, we go back to some of the numerical examples we
looked at previously. We will assume that the government takes as given the transactions among
private agents, and markets an appropriate mix of government debt to be sold exclusively to the
rentiers.

We will thus proceed as follows. We will first specify the values for 1η
2
t . We then substitute

these values and the Ramsey allocation into equation (47); we jointly solve (47), (48) and (45)
for λ1, µ, and 1b

1(1v). We will only look at the range of values for the Pareto weights that do
not imply randomization in the government policy.

7.1 Time-Consistency in Examples 1 and 2

In these examples, government spending is constant and there is no difference between time 0
and time 1, provided the private agents continue to trade only in annuities. It is trivial to check
that the time-consistent structure of public debt is to keep the same debt structure as at time
0, i.e., to set 1b

i
t =0 b

i
t = 0: the government should continue not to issue any debt claims (nor

purchase any). This is consistent with the intuition: the structure of claims that makes the policy
time consistent is the one that avoids any temptation to distort prices in the future; if private
agents do not offer any temptation by trading only in annuities, so should the government. Since
the government has 0 net wealth, its position in the annuity market should accordingly be 0.
Furthermore, the government will not have any incentives to randomize its policy whenever it did
not have any at time 0.

Suppose now instead that the private agents switch from the annuity market that was open
at the beginning of time 0 to short-term debt market. At the beginning of period 0 the agents

29I do not have a general proof that such a system always has a solution, unlike L-S. This is why I stated my
proposition as a “result” rather than a “theorem.”
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start with a net financial position given by 0η
1
t = −0η

2
t = 1

3 ∀t ≥ 0. In Example 1 we have
gt = 0 ∀t ≥ 0, whereas for Example 2 we set gt = 0.2 ∀t ≥ 0.

We now require 1η
i
t = 0 ∀t ≥ 2, whereas 1η

i
1 is set so that the budget constraint of type-2

agents is met at the Ramsey allocation: at time 0 type-1 agents sell their annuities that give them
the right to 1/3 unit of consumption forever from time 1 on and purchase an equivalent amount
of short-term assets against type-2 agents. We wish to study how the government should react
to this change in order to preserve time consistency.

Figures 6 and 7 show λ1 and µ. Here µ measures the value of redistributing one unit of wealth
(measured in time-1 units) from the taxpayers to the rentiers, whereas the latter is a measure of
the value for the government of switching to lump-sum taxation, i.e., of redistributing resources
from the taxpayers to its own budget. In the first example λ1 = 0 independently of the Pareto
weights of the 2 agents: since the tax rate is 0, at the margin taxes are not distortionary, and hence
(at the margin) the government can costlessly transfer consumption units from the taxpayers to
itself. The government would like to transfer funds to type-1 agents when ω1 is large, if it had
an instrument to do so, whereas the reverse happens when ω1 is small. In the second example λ1

is positive, reflecting the necessity of distortionary taxation.
Figures 6 and 7 show also the structure of debt at time 1 that makes the Ramsey allocation

time consistent. In the first example, when λ1 = 0, the correct choice of the government is
to simply undo the bad incentives generated by the maturity imbalance in the private debt by
offsetting with matching issues of public debt. Accordingly, no matter what the Pareto weights
of the planner are, the correct choice is to lend short-term to the rentiers and finance these loans
by issuing consoles that pay from period 2 on. In the private markets the rentiers purchase the
right to 6.6667 units of consumption payable at time 1; the government lends to them by buying
claims to 6.3333 units of consumption payable at time 1, and this is financed by issuing consoles
(purchased by the rentiers) that pay 0.3333 units of consumption in each period from time 2
on. This arrangement leaves the rentiers with net claims to 0.3333 units of consumption in each
future period. The maturity structure of the net position of the government and of the taxpayers
is unbalanced, but this is irrelevant, because at the margin the government is not willing to distort
prices to transfer funds from its budget to the taxpayers’ budgets (or vice versa).

When public spending is positive, the optimal structure of debt is quite different. Now the
government is always willing to distort prices to reduce the tax burden, so the strategy of simply
offsetting the maturity imbalance in the private market would not work. Looking at Figure 7, we
can divide the optimal debt structure into 3 ranges.

In the first range, when the Pareto weight of the taxpayers is high, µ is negative and the
government would like to redistribute wealth from the rentiers to the taxpayers. In this range
the government issues annuities and lends short-term to the rentiers. In this way the government
leaves two opposite and offsetting incentives for period 1. By reducing taxes in period 1 and
raising them from then on, the government at time 1 would favor the taxpayers, since the price of
the consumption good in time 1 would decrease in terms of future consumption, so the maturing
short-term claims of type-1 agents would be worth less. However, this temptation will be offset by
the fact that this change in price increases the value of government liabilities, thereby requiring
more taxation.

At the boundary between the first and the second range, when µ = 0, the government has no
incentive to redistribute wealth. In this case the optimal debt structure entails abstaining from
trading any claims: since there is no need of offsetting perverse redistribution temptations, the

28



government avoids creating any other source of temptation by setting 1b
1
t ≡ 0.

In the second range 0 < µ < λ1. Here the government would like to redistribute wealth
from the taxpayers to the rentiers, but because of distortionary taxation, it still values more the
resources in its own budget than the ones of the rentiers, so it is still willing to distort prices
in its favor to extract resources from type-1 agents. In this range the government would have
an incentive to raise taxes in period 1 and lower them in future periods to increase the value of
short-term claims of the rentiers. To offset this, the time-consistent debt structure requires the
government to issue short-term debt and purchase annuities.

At the end of the second range, when µ = λ1, the system becomes singular. Since the
government has no incentive to distort prices to transfer funds to or from its budget to the rentiers’
budget, the debt structure becomes irrelevant, and it is not possible to offset the incentive to
redistribute wealth in favor of the rentiers. In this case the only solution for the government is to
target type-2 agents and issue debt to them instead. Note that, near this point, the time-consistent
maturity structure of debt becomes extremely unbalanced: since the incentives provided by public
debt are small, it takes huge imbalances to offset a given incentive to redistribute wealth among
private agents.

In the final range, when the Pareto weight of the rentiers is sufficiently high, the government
is willing to increase its liabilities to transfer resources to the rentiers. In this case the appropriate
choice for the government is again to issue annuities and lend short-term: the imbalance in the
private sector would provide the government with an incentive to raise taxes in period 1 to raise
the value of claims maturing in that period, but this is counterbalanced by the transfer of resources
from type-1 agents to the government that would arise from the imbalance in the structure of
public debt.

8 Conclusions and Directions for Future Research

I have used my model to explore some of the ways in which distributional motives affect the
choice of an intertemporal tax plan, interacting with efficiency considerations.

In presence of real shocks, the possibility of distorting intertemporal prices gives the govern-
ment an important redistribution tool. This seems especially relevant for large shocks, such as
wars. We have shown that the size of the deficit a government chooses to run during a war will be
heavily influenced by its constituency. A government that draws main support from the people
that pay taxes should optimally run much larger deficits and wait for the end of the war to levy
the taxes necessary to repay for the defense expenses. On the other hand, a king supported by
a privileged class of rentiers, largely exempt from taxes, should run a much smaller deficit and
force the taxpayers to borrow at bad terms from the rentiers.

Future research is needed to establish how the incentives to distort interest rates for distribu-
tional purposes are affected in the presence of other taxes, especially when capital is introduced.
It would also be interesting to consider different sources of heterogeneity among consumers, in
particular the importance of age and retirement in overlapping-generations models. To this end,
it would be interesting to study how endogenous transfers and government spending contribute
to achieving redistribution. This issue is addressed in Bassetto [5].
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A Proofs

A.1 Proof of Theorem 1

From the first-order conditions of the consumers we have{
uic(c

i
t, x

i
t) = νip ∀t ≥ 0 a.s. ∀i = 1, . . . , N

uix(cit, x
i
t) ≥ νip(1− τt)wi, = if xit < 1

(51)

where νi are the Lagrange multipliers associated with the budget constraints of the agents. Be-
cause of the strict concavity of u, (51) can be inverted to get{

cit = Ĉi(νi, pt, (1− τt)wi) ∀t ≥ 0 a.s. ∀i = 1, . . . , N
xit = X̂ i(νi, pt, (1− τ)wi) ∀t ≥ 0 a.s. ∀i = 1, . . . , N

(52)

where both Ĉi and X̂i are strictly decreasing in pt. We now use (52) in the feasibility constraints,
which give us

N∑
i=1

Ĉi(νi, pt, (1− τt)wi)) + gt =
N∑
i=1

wi
[
1− X̂i(νi, pt, (1− τt)wi))

]
∀t ≥ 0 a.s. (53)

Given the monotonicity properties of Ĉi and X̂i, (53) is an implicit equation that can at most have
one solution for pt as a function of ({(νi, wi)}Ni=1, gt, τt). Since we are considering an allocation and
a price system that form a competitive equilibrium, the asset pricing kernel must be a solution of
(53) given the Lagrange multipliers.30 We can thus define the function P as the unique solution
to (53). By substituting this function into (52) we get consumption and leisure as a function of
(gt, τt) given the value of νi: this defines the functions Ci and Xi. QED.

Note that the functions Ci, Xi and P we just derived depend on which competitive equilibrium
we are in, since the Lagrange multipliers do.

As a technical remark, the functions Ci, X i and P are measurable and identified up to sets of
measure 0. This is because the equations (53) and (52) that define them involve only measurable
functions and are valid almost surely.

A.2 Proof of Theorem 2

We need to prove that the allocation and the price system described by (12), together with the
initial conditions, the spending process and the policy {τ̃t}∞t=0, satisfy equations (4), (6), (7) and
(8).

Define a measure M on (G× R
2N+1,G × B2N+1) by

M(A) ≡
∞∑
t=0

βtProb((gt, {(0b
i
t,0 η

i
t)}Ni=1, τt) ∈ A) =

∞∑
t=0

βtProb((gt, {(0b
i
t,0 η

i
t)}Ni=1, τ̃t) ∈ A) (54)

30If we had to actually compute the competitive equilibrium, we should take into account the fact that the
Lagrange multipliers depend on the price system. Our problem here is however different: given that we are in a
competitive equilibrium with some multipliers νi, we want to show that in this equilibrium there can be only one
level of pt associated with any level of (gt, τt).
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Given any measurable function f : G× R
2N+1 → R, (54) implies that

E

∞∑
t=0

βtf(gt, {(0b
i
t,0 η

i
t)}Ni=1, τt) =

∫
G×R2N+1

fdM = E

∞∑
t=0

βtf(gt, {(0b
i
t,0 η

i
t)}Ni=1, τ̃t) (55)

It then follows immediately that (4) is satisfied for the policy {τ̃t}∞t=0 whenever it is satisfied for
{τt}∞t=0. In the same way we can prove that the expected utility of each agent is the same in both
equilibria.

Let us now consider equation (6). Assume by contradiction that it does not hold almost surely
for the policy {τ̃t}∞t=0. Then there is some time t̂ such that

Prob
( N∑
i=1

Ci(gt̂, τ̃t̂) + gt̂ 6=
N∑
i=1

wi(1−X i(gt̂, τ̃t̂))
)
> 0

It then follows that

∞∑
t=0

βtProb
( N∑
i=1

Ci(gt, τ̃t) + gt 6=
N∑
i=1

wi(1−X i(gt, τ̃t))
)
> 0

which implies

∞∑
t=0

βtProb
( N∑
i=1

Ci(gt, τt) + gt 6=
N∑
i=1

wi(1−X i(gt, τt))
)
> 0 (56)

Equation (56) contradicts equation (6), which must hold almost surely for all periods t given the
policy {τt}∞t=0 because of the assumptions of the theorem.

In the same way we can prove that (7) and (8) hold for the policy {τ̃t}∞t=0. QED

A.3 Proof of Corollary 1

What we need to prove is that we can find a measurable function f : G × R
2N+1 such that,

whenever we choose τ̃t = f(gt, {(0b
i
t,0 η

i
t)}Ni=1, h̃0)

M(A) ≡ 1
1− β

∞∑
t=0

βtProb
(

(gt, {(0b
i
t,0 η

i
t)}Ni=1, τt) ∈ A

)
=

1
1− β

∞∑
t=0

βtProb
(

(gt, {(0b
i
t,0 η

i
t)}Ni=1, τ̃t) ∈ A

)
≡ M̃(A) ∀A ∈ G × B2N+1

(57)

We scaled the measures in (57) so that they are probability measures; this is just for convenience,
as we can now call “conditional expectation” the projection operator.

Notice that M(A) and M̃(A) coincide by their definition on all events that do not depend on
τ and τ̃ , i.e. on all sets of the form A = A1 × R, A1 ∈ G × B2N : this is because we are keeping
the same spending process and the same initial conditions under both policies.

It is natural to call (g, {(0b
i,0 η

i)}Ni=1, τ) the random vector whose probability distribution is
M(A).
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We can then decompose τ = EM (τ ||(g, {(0b
i,0 η

i)}Ni=1) + τ⊥. Let Fτ⊥ be the c.d.f. of τ⊥. Let
us then choose the function f as follows:

τ̃t = f(gt, {(0b
i
t,0 η

i
t)}Ni=1, h̃0) = EM (τ ||(g, {(0b

i,0 η
i)}Ni=1) + f̂(h̃0) (58)

with

f̂(x) ≡ min{y : x ≤ Fτ⊥(y)} (59)

Note that this choice implies

Prob(f(h̃0) ≤ x) = Fτ⊥(x) ∀x ∈ R (60)

To prove that M̃ coincides with M , it is enough to show that they coincide on all sets in the
following π-system:

A ≡{A : {z ∈ G× R
2N+1 : zi ≤ z̄i i = 1, . . . , 2N + 1, zN+2

≤EM (τ |z1 ≤ z̄1, . . . , z2N+1 ≤ z̄2N+1) + z̄2N+2for some z̄ ∈ R
2N+2}}

(61)

By construction, given a setA ∈ A characterized by a vector z̄, we haveM(A) = M((−∞, z̄1]×
. . .× (−∞, z̄2N+1]× R)Fτ⊥(z̄2N+2).

Furthermore, for such sets

M̃(A) ≡ 1
1− β

∞∑
t=0

βtProb
(

(gt, {(0b
i
t,0 η

i
t)}Ni=1, τ̃t) ∈ A

)
=

1
1− β

·

·
∞∑
t=0

βtProb
(
gt ≤ z̄1,0 b

1
t ≤ z̄2,0 η

1
t ≤ z̄3, . . . ,0 b

N
t ≤ z̄2N ,0 η

N
t ≤ z̄2N+1, f̂(h̃0) ≤ z̄2N+2

)
=
∞∑
t=0

βtProb
(
gt ≤ z̄1,0 b

1
t ≤ z̄2,0 η

1
t ≤ z̄3, . . . ,0 b

N
t ≤ z̄2N ,0 η

N
t ≤ z̄2N+1)Fτ⊥(z̄2N+2)·

· 1
1− β

= M((−∞, z̄1]× . . .× (−∞, z̄2N+1]× R)Fτ⊥(z̄2N+2) = M(A)

(62)

QED.

A.4 Proof of Theorem 3

Since the proof of theorem 3 is rather cumbersome, it is useful to break it into several lemmas.
We first rewrite the objective function in terms of the integrals I1, I2, I3, I4, which we already

defined in equations (27), (28), (29) ad (30), and

Î2 ≡
∫

(0b
1(v) +0 η

1(v))e(v)−γdm(v) (63)

In terms of these equations, our problem becomes

max
e(v)

[
ω1N1Iγ−1

1 Î1−γ
2 + ω2(1−N1(1− γ)−1I−1

1 Î2)1−γ
] I1

1− γ
+ ω2 I3

1− σ
(64)
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subject to

log ξ + γ log(1−N1I−1
1 Î2) + log(I4 − I3)− log(I1 − I2) = 0 (65)

Note that I3 has a monotone effect on the objective function, and that I4 enters in the constraint
but not in the objective function.

If we find a perturbation to a given trajectory ê that changes I3, but not I1, I2, Î2 or I3 − I4,
we can improve on ê while keeping the constraint holding. Therefore, at an optimum this cannot
happen.

We will proceed as follows:

(i) Lemma 1 first restricts the cases in which the optimal solution ê may lie on a boundary, i.e.
at 0 or at 1− g.

(ii) Under the special case of constant and deterministic government spending and coupon
payments, lemma 2 shows that ê can take at most 3 values, except on a set of m-measure
0.

(iii) Under the special case of lemma 2, lemma 3 strengthens the result and proves that ê may
take at most 2 values only, except on a set of m-measure 0.

(iv) We generalize the proof by removing the assumption that led us to study the special case.
As we will see, the proof of the general case will work by “conditioning” on the values of
(gt,0 b1t ,0 b

2
t ,0 η

1
t ) and reducing the problem to our special case. This step will not be trivial

but will not contain any further insights.

A.4.1 Statement and Proof of Lemma 1

Lemma 1 Assume that condition 1 holds. Then the optimal choice ê for maximizing (64) s.t.
(65) may not be equal to 0, except on sets of m-measure 0, and it can only be equal to 1− g if it
is equal to that value almost everywhere with respect to the measure m.

Proof. We first consider the boundary ê(v) = 0. If γ ≥ 1, choosing ê(v) = 0 with positive measure
leads both consumers to infinite negative utility; the government will never pick such a policy
whenever an alternative policy is available.

Consider now the case γ < 1, (gt, N1
0b

1
t +0 b

2
t ,0 η

1
t +0 b

1
t ) 6= 0. Since g < 1 by our assumptions

on the public spending process, equation (20) implies x2(v) = 1 − g(v) > 0. The leisure of type
2 agents can be positive while their consumption is 0 only if the tax rate is 100% in the state
we are considering, i.e. τ = 1. In this case, these agents will not work at all, which implies
x2(v) = 1: this can be consistent with market clearing only if g(v) = 0. Since the price of the
goods in the states with no consumption is infinite, the budget constraints of the agents can hold
only if N1

0b
1(v) +0 b

2(v) = 0 and 0η
1(v) +0 b

1(v) = 0. These requirements violate condition 1.
We thus proved that e > 0 except at most on sets of m-measure 0.

We now look at the consequences of e(v) = 1 − g(v). From (21), this can happen in two
cases: either k2 = 0 or τ(v) = −∞. The latter case is easily shown to be incompatible with
the government budget constraint. If k2 = 0, it follows that c2(v) = 0 a.s. and hence, from (7),
x2(v) = 0 a.s. as well. We thus obtain e(v) = 1− g(v) a.s. from equation (20). QED.
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A.4.2 Statement and Proof of Lemma 2

Lemma 2 Assume that (gt,0 b1t ,0 b
2
t ,0 η

1
t ) take a single value almost everywhere with respect to the

measure m. Assume that condition 1 holds. Then the optimal choice ê for maximizing (64) s.t.
(65) may take at most 3 values, except on a set of m-measure 0.

Lemma 2 corresponds to the case of no uncertainty, constant government spending and con-
stant coupon payments among all the agents in the economy.

Proof. We reason by contradiction. Let ê be the optimal choice by the government. We
ruled out that ê(v) = 0 or ê(v) = 1 − g with positive probability, unless ê(v) = 1 − g a.s., in
which case our statement holds.31 Therefore, if ê takes more than 3 values, we can find an open
set S ⊂ (0, 1 − g) such that ê takes more than 3 values in S.32 Let V ≡ ê−1(S) be the set of
realizations of v such that e(v) falls into S. We wish to prove that there exist a function e that
satisfies the constraint (65) and leads to a higher value for the objective. We restrict our search
to the following space:

S ≡
{
e : e is m−measurable ∧ e(v) = ê(v)∀v ∈ [0, 1] \ V ∧ e(v) ∈ S ∀v ∈ V

}
(66)

It is easy to see that ê ∈ S.
The space S allows perturbations of ê only in the range where the function lies in S. The

reason for this is to be sure that a Fréchet differential is properly defined.
Note first that, if e ∈ S, then its restriction to V (ê|V ) belongs to L1

m(V ), which is a Banach
space. Furthermore, the space of all the restrictions to V of functions in S is an open subset of
L1
m(V ). Since all the perturbations we consider coincide outside of V by our construction of S,

we only consider their restriction on V .
We can treat I1, I2, Î2, I3 and I4 as functions of e|V . It is more convenient to replace I2 and

Î2 in our analysis with

Ĩ2 ≡
∫
e(v)−γdm(v) (67)

In the case we are considering here, we have I2 = (N1
0b

1 +0 b
2)Ĩ2 and Î2 = (0b

1 +0 η
1)Ĩ2: both

I2 and Î2 are simply proportional to Ĩ2, so that a perturbation that does not affect the latter
integral will not affect the two former either.

Let thus I ≡ (I1, I2, I3, I4) : S → R
4. I is Fréchet differentiable, and its Fréchet differential is

given by

δI(e|V ;h) =


(1− γ)

∫
V h(v)e(v)−γdm(v)

−γ
∫
V h(v)e(v)−γ−1dm(v)

(1− σ)
∫
V h(v)(1− e(v)− g)−σdm(v)

−σ
∫
V h(v)(1− e(v)− g)−σ−1dm(v)

 (68)

31For simplicity of notation, we can here drop the dependence of g, 0b
1, 0b

2 and 0η
1 on v, since they are constant

functions almost everywhere with respect to the measure m.
32Note that we require S to be a strict subset of (0,1-g). This is convenient to ensure that all our integrals will

be properly defined.
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We know that, if ê is a regular point for the mapping I, then we can find a perturbation that
will leave I1, I2 and I3− I4 unchanged while increasing or decreasing I3.33 This would imply that
it is possible to improve upon the choice of ê, and therefore ê would not be optimal.

We therefore need to show that ê is a regular point for the mapping I whenever it takes more
than three values in V with positive measure m. ê will be a regular point for I whenever its
Fréchet differential is onto R

4.
Since the function h is an arbitrary function in L1

m(V ), δI(e|V ;h) will not be onto R
4 if and

only if there is a non-zero vector a ≡ (a1, a2,−a3,−a4) such that

a ·


e(v)−γ

e(v)−γ−1

(1− e(v)− g)−σ

(1− e(v)− g)−σ−1

 = 0 (69)

for all v ∈ V , except at most a set of m-measure 0.
The remainder of the proof of lemma 2 shows that equation (69) can never hold in more than

3 points. To do this, we define

f1(y) ≡ a1y
−γ + a2y

−γ−1 (70)

f2(y) ≡ a3(1− y − g)−σ + a4(1− y − g)−σ−1 (71)

and we look for the maximum number of intersections between f1 and f2 in (0,1-g). By enumer-
ating and studying each possible sign that each component of a can take, it is possible to show
that in no case there can be more than 3 intersections between f1 and f2. Note that, by linear
homogeneity, we can restrict our attention to a1 = 1 or a1 = 0, a2 = 1. I only present here the
analysis of the most complicate case, i.e. a1 = 1, a2 < 0, a3 > 0, a4 < 0. The other cases, as well
as the details of the algebra, are available from the author upon request.34

In this case, f1 is negative35 for x < −a2, strictly increasing for x < −a2(γ+1)
γ , strictly concave

for x < −a2(γ+2)
γ and it has a strictly positive third derivative for x < −a2(γ+3)

γ .

f2 is strictly positive for x < 1 − g + a4
a3

, strictly increasing for x < 1 − g+]a4(σ+1)
a3σ

, strictly

convex for x < 1−g+ a4(σ+2)
a3σ

and it has a strictly positive third derivative for x < 1−g+ a4(σ+3)
a3σ

.
We will prove that f ′1 − f ′2 has at most two roots over (0, 1− g). This is enough to establish

that f1 − f2 has at most 3 roots. We distinguish 7 subcases.

1. −a2(γ+1)
γ ≤ 1−g+ a4(σ+2)

a3σ
. In all of these subcases, f ′1−f ′2 has exactly 1 root in the interval

(0,−a2(γ+1)
γ ]: f ′1 − f ′2 is strictly decreasing; it converges to +∞ as y → 0 and it is strictly

negative in −a2(γ+1)
γ . Furthermore, f ′1− f ′2 has no roots (−a2(γ+1)

γ , 1− g+ a4(σ+1)
a3σ

], since it
is strictly negative in this interval.

33This is an application of theorem 1 in section 9.2 of Luenberger [14].
34All the other cases are considerably simpler, and most of them are trivial. In particular, this is the only case

for which we need to study derivatives of up to the third order!
35The complete statement would say that f1 is strictly negative for x < −a2, 0 for x = −a2 and positive for

x > −a2. In this statement and all the following ones we will leave the equality and the other side of the inequality
implicit. This is just for brevity.
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1a. −a2(γ+1)
γ < −a2(γ+2)

γ ≤ 1 − g + a4(σ+1)
a3σ

. In this case f ′1 − f ′2 is strictly increasing on

(1 − g + a4(σ+1)
a3σ

, 1 − g). It is strictly negative at the lower bound, and tends to +∞
at the upper bound; we therefore have exactly one intersection. In subcase (1a), we
therefore have exactly 2 intersections between f ′1 and f ′2 in (0, 1− g).

1b. −a2(γ+1)
γ < 1 − g + a4(σ+1)

a3σ
< −a2(γ+2)

γ < 1 − g. Let us first consider the interval

(1− g+ a4(σ+1)
a3σ

,−a2(γ+2)
γ ]. In this interval, f ′1 is strictly convex, whereas f ′2 is strictly

concave; it follows that f ′1−f ′2 is strictly convex. Since f ′1−f ′2 is strictly negative at the
lower bound of the interval, it can have either 0 or 1 roots in the interval, depending
on the sign it takes at the upper bound. In the interval (−a2(γ+2)

γ , 1 − g) f ′1 − f ′2 is
strictly increasing, and its limit at 1−g is +∞; if it is nonnegative at the lower bound,
this implies that there was exactly one root in (1− g + a4(σ+1)

a3σ
,−a2(γ+2)

γ ] and there is

no root in (−a2(γ+2)
γ , 1−g) ; if it is strictly negative at the lower bound, then there was

no root in (1− g+ a4(σ+1)
a3σ

,−a2(γ+2)
γ ] and there is exactly one root in (−a2(γ+2)

γ , 1− g).
It follows that in subcase (1b) we have exactly 2 intersections between f ′1 and f ′2 on
(0, 1− g).

1c. −a2(γ+1)
γ < 1 − g + a4(σ+1)

a3σ
< 1 − g ≤ −a2(γ+2)

γ . In this case f ′1 − f ′2 is convex over

the interval (1 − g + a4(σ+1)
a3σ

, 1 − g); it is strictly negative at the lower bound, and
it converges to +∞ at the upper bound, so that it has exactly 1 intersection in the
considered interval. In subcase (1c) we thus have exactly 2 intersections between f ′1
and f ′2 on (0, 1− g).

2. 1− g + a4(σ+2)
a3σ

< −a2(γ+1)
γ .

2a. 0 < 1 − g + a4(σ+2)
a3σ

< −a2(γ+2)
γ < 1 − g. On (0, 1 − g + a4(σ+2)

a3σ
], f ′1 − f ′2 is strictly

decreasing; its limit at the lower bound is +∞. There are no roots if f ′1−f ′2 is positive
at the upper bound, and exactly one root if f ′1− f ′2 is nonpositive at the upper bound.
On (1−g+ a4(σ+2)

a3σ
,−a2(γ+2)

γ ], f ′1−f ′2 is strictly convex. If f ′1−f ′2 is positive at the lower

bound, it can have 0, 1 or 2 roots in the interval (1− g + a4(σ+2)
a3σ

,−a2(γ+2)
γ ] and thus

the same number of roots in (0,−a2(γ+2)
γ ]. If f ′1 − f ′2 is nonpositive at 1− g + a4(σ+2)

a3σ
,

it can have 0 or 1 roots in (1− g+ a4(σ+2)
a3σ

,−a2(γ+2)
γ ] and thus it will have either 1 or 2

roots in (0,−a2(γ+2)
γ ]. On (−a2(γ+2)

γ , 1− g), f ′1 − f ′2 is strictly increasing, and its limit

at the upper bound is +∞. If f ′1 − f ′2 has an even number of roots in (0,−a2(γ+2)
γ ],

then it is nonnegative at −a2(γ+2)
γ and thus there are no roots in (−a2(γ+2)

γ , 1 − g);

if it has an odd number of roots in (0,−a2(γ+2)
γ ], then it is negative at −a2(γ+2)

γ and

there is exactly one root in (−a2(γ+2)
γ , 1 − g). It follows that in subcase (2a) f ′1 − f ′2

has either 0 or 2 roots over (0, 1− g).

2b. 1 − g + a4(σ+2)
a3σ

≤ 0 < −a2(γ+2)
γ < 1 − g. On (0,−a2(γ+2)

γ ], f ′1 − f ′2 is strictly convex,
and its limit at 0 is +∞. Therefore it can have 0, 1 or 2 roots in this interval. On
(−a2(γ+2)

γ , 1 − g), f ′1 − f ′2 is strictly increasing, and its limit at the upper bound is

+∞. If f ′1 − f ′2 has an even number of roots in (0,−a2(γ+2)
γ ], then it is nonnegative at
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−a2(γ+2)
γ and thus there are no roots in (−a2(γ+2)

γ , 1 − g); if it has an odd number of

roots in (0,−a2(γ+2)
γ ], then it is negative at −a2(γ+2)

γ and there is exactly one root in

(−a2(γ+2)
γ , 1− g). Therefore in subcase (2b) f ′1−f ′2 has either 0 or 2 roots in (0, 1− g).

2c. 0 < 1 − g + a4(σ+2)
a3σ

< 1 − g ≤ −a2(γ+2)
γ On (0, 1 − g + a4(σ+2)

a3σ
], f ′1 − f ′2 is strictly

decreasing; its limit at the lower bound is +∞. There are no roots if f ′1−f ′2 is positive
at the upper bound, and exactly one root if f ′1− f ′2 is nonpositive at the upper bound.
On (1 − g + a4(σ+2)

a3σ
, 1 − g), f ′1 − f ′2 is strictly convex, and its limit at 1 − g is +∞.

If f ′1 − f ′2 is positive at 1 − g + a4(σ+2)
a3σ

, then there can be either 0 or 2 roots in this

interval. If f ′1 − f ′2 is nonnegative at 1 − g + a4(σ+2)
a3σ

, since it is strictly decreasing in

that point, it follows that it will have exactly one root in (1− g + a4(σ+2)
a3σ

, 1− g). We
thus have that in subcase (2c) there can be either 0 or 2 roots for f ′1− f ′2 in (0, 1− g).

2d. 1 − g + a4(σ+2)
a3σ

≤ 0 < 1 − g ≤ −a2(γ+2)
γ In this case f ′1 − f ′2 is convex over the whole

interval (0, 1 − g); furthermore, its limits at both bounds are +∞. It follows that it
can have either 0 or 2 roots in the interval.

QED.

A.4.3 Statement and Proof of Lemma 3

Lemma 3 Assume that (gt,0 b1t ,0 b
2
t ,0 η

1
t ) take a single value almost everywhere with respect to the

measure m. Assume that condition 1 holds. Then the optimal choice ê for maximizing (64) s.t.
(65) may take at most 2 values, except on a set of m-measure 0.

Lemma 3 still considers the case of no uncertainty, constant government spending and constant
coupon payments among all the agents in the economy. It starts from the result of lemma 2 and
strengthens it by considering a different class of perturbations.

Proof. From lemma 2, we know that the optimal choice ê is a step function with at most 3
values, aside from sets of m-measure 0; from lemma 1, we know that each of the three values lies
in (0, 1− g), unless ê is the constant 1− g.

We reason again by contradiction. Suppose ê takes three values, each with positivem-measure;
let Let e1 < e2 < e3 be the three values. The integrals I can then be rewritten as

I1 = m1e
1−γ
1 +m2e

1−γ
2 + (

1
1− β

−m1 −m2)e1−γ
3 (72)

Ĩ2 = m1e
−γ
1 +m2e

−γ
2 + (

1
1− β

−m1 −m2)e−γ3 (73)

I3 = m1(1− g − e1)1−σ +m2(1− g − e2)1−σ + (
1

1− β
−m1 −m2)(1− g − e3)1−σ (74)

I4 = m1(1− g − e1)−σ +m2(1− g − e2)−σ + (
1

1− β
−m1 −m2)(1− g − e3)−σ (75)
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where mi ≡ m({v : e(v) = ei}), i = 1, 2.
As we already observed, ê cannot be optimal if we can perturb in either direction I3 while

holding I1, Ĩ2 and I3− I4 constant. For this proof, we treat I as a function of (e1, e2, e3,m1,m2).
If ê takes all three values with positive measure, we have mi > 0, i = 1, 2 and m1 +m2 <

1
1−β .

In this case, therefore, I is now a mapping from R
5 to R

4; given our previous observations, the
mapping is well defined and differentiable in an open neighborhood of (e1, e2, e3,m1,m2). By the
same theorem we applied in lemma 2, ê cannot be optimal if (e1, e2, e3,m1,m2) is a regular point
of the mapping I, i.e. if the differential of I as a function of (e1, e2, e3,m1,m2) is onto R

4. We
now prove that (e1, e2, e3,m1,m2) is indeed a regular point of I when all three points are distinct
and all measures strictly positive. To do this, we will just perturb (e1, e2, e3,m2) while we will
hold m1 fixed: we will show that the differential with respect to just the four elements already
spans R

4. The Jacobian of the mapping I is given by36

J =


e−γ1 e−γ−1

1 (1− e1 − g)−σ (1− e1 − g)−σ−1

e−γ2 e−γ−1
2 (1− e2 − g)−σ (1− e2 − g)−σ−1

e−γ3 e−γ−1
3 (1− e3 − g)−σ (1− e3 − g)−σ−1

e1−γ2 −e1−γ3
1−γ − e−γ2 −e

−γ
3

γ
(1−e2−g)1−σ−(1−e3−g)1−σ

1−σ − (1−e2−g)−σ−(1−e3−g)−σ
σ

 (76)

which can be rewritten as

J =


e−γ1 e−γ−1

1 (1− e1 − g)−σ (1− e1 − g)−σ−1

e−γ2 e−γ−1
2 (1− e2 − g)−σ (1− e2 − g)−σ−1

e−γ3 e−γ−1
3 (1− e3 − g)−σ (1− e3 − g)−σ−1∫ e3

e2
y−γdy

∫ e3
e2
y−γ−1dy

∫ e3
e2

(1− y − g)−σdy
∫ e3
e2

(1− y − g)−σ−1dy

 (77)

The Jacobian J can only be singular if there exists a nonzero vector (a1, a2, a3, a4) such that

a1e
−γ
i + a2e

−γ−1
i + a3(1− ei − g)−σ + a4(1− ei − g)−σ−1 = 0 i = 1, 2, 3 (78)

and ∫ e3

e2

(a1y
−γ + a2y

−γ−1 + a3(1− y − g)−σ + a4(1− y − g)−σ−1)dy = 0 (79)

From lemma 2, we know that the function that we are integrating in (79) can have at most three
zeros in (0, 1− g). By (78), the three zeros are e1, e2, e3, so that the function is never zero in any
point of (e2, e3); since it is a continuous function, it is either always strictly positive, or always
strictly negative. It follows that its integral cannot be zero; therefore J is of full rank and ê
cannot be an optimal choice. QED.

We are now ready to prove the main theorem.

A.4.4 Proof of the Main Body of Theorem 3

Note that maximizing (25) subject to (22) can be rewritten as maximizing (64) subject to (65),
given the definitions of our integrals. As in lemmas 2 and 3, our proof proceeds by using the fact

36For convenience, we scaled the columns by 1
1−γ , − 1

γ
, 1

1−σ and − 1
σ

respectively. This does not alter the rank
of the Jacobian, and it allows us to have a shorter expression.
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that we can improve upon ê if we can find a perturbation that can vary I3 in either direction
while leaving I1, I2, Î2 and I3 − I4 unchanged. Recalling the definition of ṽ in (38), we can use
Fubini’s theorem and rewrite the integrals as follows:

I1 ≡
∫ ∫ 1

0
e(ṽ, h)1−γdhdm(ṽ, [0, 1]) (80)

I2 ≡
∫ ∫ 1

0
(N1

0b
1(ṽ, h) +0 b

2(ṽ, h))e(ṽ, h)−γdhdm(ṽ, [0, 1]) (81)

Î2 ≡
∫ ∫ 1

0
(0b

1(ṽ, h) +0 η
1(ṽ, h))e(ṽ, h)−γdhdm(ṽ, [0, 1]) (82)

I3 ≡
∫ ∫ 1

0
(1− e(ṽ, h)− g(ṽ))1−σdhdm(ṽ, [0, 1]) (83)

I4 ≡
∫ ∫ 1

0
(1− e(ṽ, h)− g(ṽ))−σdhdm(ṽ, [0, 1]) (84)

Consider now the inner integrals. In these integrals we are conditioning on ṽ and integrating with
respect to h alone. By the same proof as lemmas 2 and 3, ê(ṽ, h) must take at most 2 values as
a function of h for each ṽ, except at most in sets of Lebesgue measure 0,37 for otherwise we can
vary the inner integral in I3 while holding the inner integrals in I1, I2, Î2 and I3 − I4 fixed. Of
course, changes in the inner integrals will be reflected in changes in the whole integrals only if
they take place on sets that have positive m-measure in the outside integration: therefore ê(ṽ, h)
can take more than two values as a function of h for any given ṽ on sets of m-measure 0, but this
cannot happen on sets of positive m-measure. QED.

B Uniform Commodity Taxation: a Formal Analysis

This appendix contains a formal treatment of the claims contained in section 6 of the paper. In
this appendix, we adopt a notation that allows us to easily compare the results in the papers
with what has already been established in a static framework, in particular by Atkinson and
Stiglitz [1, 2].

We indicate by ci, i = 1, 2 the vector of consumption goods consumed by type-i agents. x is
the vector of leisure consumed by the taxpayers (agents of type 2). The preferences of the rentiers
are described by

V 1(Γ1(c1)) (85)

and those of the taxpayers by

V 2(Γ2(c2),Θ(x)), (86)

37Note that h is distributed uniformly, so its measure is the Lebesgue measure.
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where Γi, i = 1, 2 and Θ are linearly homogeneous functions, and all the functions are assumed
to be twice continuously differentiable. Equations (85) and (86) capture two of the features that
are relevant for our purposes: that preferences are separable between leisure and the consumption
goods, and that the subutilities are homothetic. These assumptions are satisfied by the preferences
(14) and (15) that we assumed in section 4.

To keep notation simple, we will let ci and x be finite-dimensional vectors; cij will denote the
j-th component of ci, and xj will denote the j-th component of x. All the results continue to
hold if we switch to the appropriate notation in an infinite-dimensional space.

The technology of the economy is characterized by

F (N1c1 + c2 + g, x) ≤ 0. (87)

We assume the technology exhibits constant returns to scale. To stay closer to A-S, we first assume
F to be twice continuously differentiable, with a strictly positive gradient. This assumption
implies that any good (or leisure) can be transformed into another good (leisure), which is violated
by our problem; we therefore will later amend this hypothesis and look at the implications of doing
so.

Atkinson and Stiglitz work mostly with a small open economy (or a linear technology), in which
producer prices are given, although their results are more general; in their case, the function F
could be written as

F (N1c1 + c2 + g, x) =
∑
j

q∗j (N
1c1
j + c2

j + gj) +
∑
j

w∗j (xj − 1) (88)

where q∗j are the international prices of the different consumption goods and w∗j are the interna-
tional wages for the various types of leisure.

Let w be the vector of wages corresponding to the different types of leisure and q the vector
of producer prices of the consumption goods. If we normalize to 1 the wage rate of time of the
first type, profit maximization on the firms’ part requires:

qj = −
Fcj
Fx1

(89)

and

wj =
Fxj
Fx1

(90)

The budget constraints of the rentiers and the taxpayers can be written as follows:∑
j

pj(c1
j − c̄1

j )− T ≤ 0 (91)

and ∑
j

pj(c2
j − c̄2

j ) +
∑
j

waj (xj − 1)− T ≤ 0, (92)

where c̄i is the vector of the initial endowment of each type, p is the vector of consumer prices, wa

is the vector of after-tax wages and T is a lump-sum transfer from the government. We already
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imposed that the taxpayers start with 1 unit of time of each type; since we are free to adjust the
function F , this can be viewed simply as a normalization.

In line with A-S, we assume the government can tax the consumption goods (net of the initial
endowment) and the labor supply, but it cannot tax any type of leisure. For a general production
function F , this is a richer set of instruments than the one we introduced in the paper, where only
the labor supply can be taxed. However, we will show later that taxing consumption in addition
to the labor supply is redundant for the particular production function that we use in the paper.
One tax rate is redundant, so we can set q1 = p1.

As in the main text, we will work with the primal problem: we will use the first-order con-
ditions of the consumers and the producers to substitute out the prices and we will look at the
Ramsey problem as one of solving for quantities.38 From the budget constraints and the first-order
conditions of the consumers we obtain the following implementability constraints:∑

j

Γ1
j (c

1
j − c̄1

j )− Γ1
1T ≤ 0 (93)

and

V 2
1

∑
j

Γ2
j (c

2
j − c̄2

j ) + V 2
2

∑
j

Θj(xj − 1)− V 2
1 Γ2

1T ≤ 0. (94)

In equations (93) and (94) and in what follows a subscript j to a function refers to the partial
derivative with respect to the j-th component. We normalized the price of the first consumption
good to 1, we multiplied the first equation by Γ1

1 and the second equation by V 2
1 Γ2

1.
In addition to the implementability constraints, the government faces the following further

constraints:

(i) the feasibility constraint, given by equation (87);

(ii) in a competitive equilibrium, the marginal rates of substitution must be the same for all
consumers, i.e.

Γ1
jΓ

2
k = Γ1

kΓ
2
j ∀j, k (95)

Because of (95), the implementability constraint of the rentiers can also be written in the
following form, which will be more convenient later:

V 2
1

∑
j

Γ2
j (c

1
j − c̄1

j )− V 2
1 Γ2

1T ≤ 0. (96)

The first-order conditions for the government are

ω1V 1
1 Γ1

i + λ1V 2
1 Γ2

i +
∑
j>1

νj

[
Γ1

1iΓ
2
j − Γ1

ijΓ
2
1

]
= µFci ∀i, (97)

38Atkinson and Stiglitz follow the dual approach: they substitute out quantities and solve the problem in terms
of prices. The primal approach is easier in our case in which we have an initial endowment of more than one good.
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ω2V 2
1 Γ2

i + λ1

{
V 2

11Γ2
i

[∑
j

Γ2
j (c

1
j − c̄1

j )− Γ2
1T
]

+ V 2
1

[∑
j

Γ2
ij(c

1
j − c̄1

j )− Γ2
1iT
]}

+λ2

{
V 2

11Γ2
i

[∑
j

Γ2
j (c

2
j − c̄2

j )− Γ2
1T
]

+ V 2
1

[∑
j

Γ2
ij(c

2
j − c̄2

j )− Γ2
1iT
]

+ V 2
1 Γ2

i

+V 2
12Γ2

i

∑
j

Θj(xj − 1)
}

+
∑
j>1

νj

[
Γ1

1Γ2
ij − Γ1

jΓ
2
1i

]
= µFci ∀i,

(98)

ω2V 2
2 Θi + λ1V 2

12Θi

[∑
j

Γ2
j (c

1
j − c̄1

j )− Γ2
1T
]

+ λ2

{
V 2

12Θi

[∑
j

Γ2
j (c

2
j − c̄2

j )− Γ2
1T
]

+V 2
22Θi

∑
j

Θj(xj − 1) + V 2
2

∑
j

Θij(xj − 1) + V 2
2 Θi

}
= µFxi ∀i

(99)

and

−λ1V 2
1 Γ2

1 − λ2V 2
1 Γ2

1 ≥ 0 =⇒ λ1 ≥ −λ2, T ≥ 0, (λ1 + λ2)T = 0, (100)

where λ1, λ2, ν and µ are the Lagrange multipliers associated with the constraints (96), (94), (95)
and (87) respectively. Given the Ramsey allocation, the conditions for a competitive equilibrium
imply the following price system and tax policy:

pi =
Γ2
i

Γ2
1

∀i, (101)

wai =
V 2

2 Θi

V 2
1 Γ2

1

∀i, (102)

qi =
Fci
Fc1

∀i, (103)

wi =
Fxi
Fc1

∀i, (104)

τ ci =
pi
qi
− 1 ∀i (105)

and

τwi = 1− wai
wi

∀i, (106)

where we normalized p1 = q1 = 1.
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We have a uniform commodity tax when pi
qi

is independent of i, or, equivalently, when Γ2
i

Fci
is

independent of i.39 To study what conditions lead to a uniform commodity tax, it is useful to
rewrite the first-order conditions as follows:

ω1V 1
1

Γ1
i

Fci
+ λ1V 2

1

Γ2
i

Fci
= µ− 1

Fci

∑
j>1

νj [Γ1
1iΓ

2
j − Γ1

ijΓ
2
1] ∀i, (107)

Γ2
i

Fci

{
ω2V 2

1 + λ1
[
V 2

11

∑
j

Γ2
j (c

1
j − c̄1

j )
]

+ λ2
[
V 2

11

∑
j

Γ2
j (c

2
j − c̄2

j ) + V 2
1 + V 2

12

∑
j

Θj(xj − 1)
]}

=µ− 1
Fci

[
λ1V 2

1

∑
j

Γ2
ij(c

1
j − c̄1

j ) + λ2V 2
1

∑
j

Γ2
ij(c

2
j − c̄2

j ) +
∑
j>1

νj(Γ1
1Γ2

ij − Γ1
jΓ

2
1i)
]
∀i

(108)

and

Θi

Fxi

{
ω2V 2

2 + λ1V 2
12

∑
j

Γ2
j (c

1
j − c̄1

j ) + λ2
[
V 2

12

∑
j

Γ2
j (c

2
j − c̄2

j ) + V 2
22

∑
j

Θj(xj − 1) + V 2
2

]}

=µ− λ2V 2
2

Fxi

∑
j

Θij(xj − 1) ∀i,
(109)

together with (100).
Note that all the terms in T dropped out of equations (107), (108) and (109) because of

(100). Lump-sum transfers and taxes affect our problem only through the multipliers λ1 and λ2:
given such multipliers, the first-order conditions are identical whether T is optimally chosen or
is constrained to be 0, as in our main text. While lump-sum taxes and transfers can reduce the
incentive to distort prices, they cannot completely offset it unless λ1 = λ2 = 0; it is easy to check
that in this case the allocation is an unconstrained Pareto optimum, which can only happen if
the government does not need to levy distortionary taxes.

We can now focus on the terms that break the optimality of a uniform commodity tax.

(i) The terms
∑

j Γ2
ijc

1
j and

∑
j Γ2

ijc
2
j . If Γ2 is homogeneous of degree 1, then its derivatives

are homogeneous of degree 0 and hence
∑

j Γ2
ijc

2
j = 0: this is the key to the result obtained

by Atkinson and Stiglitz [1]. However, it is not enough for Γ2 (nor Γ1) to be homogeneous
of degree 1 to reduce the first of the two terms to 0. If Γ1 and Γ2 are two different
homogeneous functions, then the rentiers and the taxpayers will allocate their spending over
the consumption goods in different proportions; the government will then be able to favor a
group by taxing more lightly the goods it consumes in a larger proportion, which would lead
away from optimal taxation. On the other hand, if Γ1 and Γ2 are the same function, then
equality of the marginal rates of substitution implies that c1 is proportional to c2 and both
sums are 0: in this case, both groups allocate their spending in equal proportions on the
consumption goods and the government would not favor either by deviating from a uniform
tax. The environment of sections 4 and 5 satisfies the condition Γ1 = Γ2, so the deviations
from a uniform commodity tax do not arise from this source in our case.

39Due to (95), this also implies that
Γ1

i
Fci

is independent of i.
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(ii) The terms
∑

j Γ2
ij c̄

1
j and

∑
j Γ2

ij c̄
2
j . Even if Γ1 and Γ2 are homogeneous of degree 1 and are

the same function, deviations from a uniform tax follow if c̄1 and c̄2 are not proportional
to c2 (and c1). Since c̄1 is the only source of resources for the rentiers, if it is proportional
to c1 it must be equal to it as well: we are then in a case in which the rentiers do not
trade away from their initial endowment. As we observed, the net trade between the two
types is the main determinant of the pattern of taxes we derive in this paper. By distorting
prices, taxes change the value of the initial endowment at consumer prices; each group gets
a positive [negative] income effect from increases in the prices of goods for which it is a
net seller [buyer]. For this reason, a government that wants to favor the rentiers will use
some price distortion even if it can raise revenues from the taxpayers and redistribute them
lump-sum; the first-order conditions show that it will be optimal to trade off the increased
distortions from the necessity of raising additional revenues to rebate lump sum with the
price distortions that a nonuniform commodity tax implies.

(iii) The term
∑

j>1 νj(Γ
1
1Γ2

ij−Γ1
jΓ

2
1i). This term comes from the constraint that marginal rates

of substitution should be equal across consumers (equation (95)). We now show that this
constraint is not binding if the previous two sources of deviation from uniform commodity
taxation are not present. To see this, assume that the functions Γ1 and Γ2 are the same and
that c̄1 and c̄2 are proportional to c1 and c2. If (95) is not binding, then ν = 0. Under these
conditions, equation (108) implies that Γ2

i
Fci

is independent of i and hence equation (107)

implies the same for Γ1
i

Fci
; Γ1 and Γ2 are thus proportional to each other, and the constraint

(95) is satisfied.

Notice that uniform commodity taxation does not imply uniform factor taxation. We could
easily repeat the same steps to analyze the taxes on factors; since the initial endowment of
each factor is 1, homotheticity will not be enough to establish uniform factor taxation unless
the labor supply is constant. This is the reason why the labor tax rate is not constant in the
representative-agent economy of Lucas and Stokey [13], even when the separability and homoth-
eticity requirements discussed above hold and when there is no initial government debt.

The previous analysis requires the production function to allow for substitutability of all input
and output factors. Our technology is instead described by

Fi(N1c1
i + c2

i + gi, xi) ≤ 0 ∀i. (110)

With this production function, the multiplier µ will be a vector rather than a scalar. In this
case, the Ramsey allocation identifies uniquely the consumer prices (through the marginal rates
of substitution), but not the producer prices: since there is no substitutability among different
goods, firms will not be able to change their production in response to changes in relative prices.
Analogously, firms cannot substitute different factors of production and hence are not able to react
to changes in wages before tax. The firms’ profit maximization conditions only link the producer
price of a good with the wage before tax in the same period and state of nature. Because of this,
the government can then implement the Ramsey allocation by using consumption taxes or labor
taxes alone, as we assumed in the text; the only requirement is the following:

1 + τ cj
1− τwj

=
FjxV

2
1 Γ2

j

FjcV 2
2 Θj

∀j. (111)
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Given equation (111), it is always possible to obtain a constant tax rate on consumption goods or
a constant tax rate on all factors of production by an appropriate choice. As an example, in the
paper we normalized τ c = 0. However, when the sources of deviations from uniform commodity
taxes and/or uniform factor taxes are present, it is not possible in general to have both a uniform
commodity tax and a uniform factor tax. For this reason, we obtain different tax rates on labor
income even under the assumptions of section 4.
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Figure 2 − France vs. Britain example
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Figure 3 − France vs. Britain example
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Figure 4 − bus. cycle example
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Figure 5 − bus. cycle example
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Figure 6: time consistency in example 1
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Figure 7: time consistency in example 2
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