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A Exogenous Innovation

This section derives the equilibrium when innovation is an exogenous process.

A.1 Normalization

Define the normalized distribution of productivity, as the distribution of productivity relative
to the endogenous adoption threshold M(t):

Φi(t, Z) ≡ Fi(t, log(Z/M(t))) (A.1)

Differentiate to obtain the PDF yields

∂ZΦi(t, Z) = 1
Z

∂Fi(t, log(Z/M(t)))
∂z

= 1
Z
∂zFi(t, z) (A.2)

1References to equations, etc. in the main paper are prefixed by Main.
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Differentiate (A.1) with respect to t and use the chain rule to obtain the transformation of
the time derivative

∂tΦi(t, Z) = ∂Fi(t, log(Z/M(t)))
∂t

− M ′(t)
M(t)

∂iF (t, log(Z/M(t)))
∂z

(A.3)

Use the definition g(t) ≡M ′(t)/M(t) and the definition of z,

∂tΦi(t, Z) = ∂tFi(t, z)− g(t)∂zFi(t, z) (A.4)

Normalizing the Law of Motion This is derived with a more general adoption process,
where F̂i(t, z) is the mass of agents who draw a technology below z with the innovation state
i. In our baseline case, F̂`(t, z) = F (t, z) and F̂h(t, z) = 0.

Substitute (A.2) and (A.4) into Main (7) and (8),

∂F`(t, log(Z/M(t)))
∂t

= g(t)∂F`(t, log(Z/M(t)))
∂z

− λ`F`(t, log(Z/M(t))) + λhFh(t, log(Z/M(t)))

+ (S`(t) + Sh(t)) F̂`(t, log(Z/M(t)))− S`(t)
− ηF`(t, log(Z/M(t))) + ηH

(
log(Z/M(t))− log(Z̄(t)/M(t))

)
(A.5)

∂Fh(t, log(Z/M(t)))
∂t

= g(t)∂Fh(t, log(Z/M(t)))
∂z

− λhFh(t, log(Z/M(t))) + λ`F`(t, log(Z/M(t)))

− γZ
Z

∂Fh(t, log(Z/M(t)))
∂z

+ (S`(t) + Sh(t)) F̂h(t, log(Z/M(t)))− Sh(t)

− ηFh(t, log(Z/M(t))) (A.6)

Use the definition of z and reorganize to find the normalized KFEs,

∂tF`(t, z) = −λ`F`(t, z) + λhFh(t, z) + g(t)∂zF`(t, z) + S(t)F̂`(t, z)− S`(t)
− ηF`(t, z) + ηH (z − z̄(t)) (A.7)

∂tFh(t, z) = λ`F`(t, z)− λhFh(t, z) + (g(t)− γ)∂zFh(t, z) + S(t)F̂h(t, z)− Sh(t)− ηFh(t, z)
(A.8)

where the domain of the normalized KFE at time t is [0, z̄(t)]. Recall that the unnormalized
flux (assuming M ′(t) ≥ γM(t)) is

S`(t) ≡M ′(t)∂ZΦ`(t,M(t)) (A.9)
Sh(t) ≡ (M ′(t)− γM(t))︸ ︷︷ ︸

Relative Speed of Boundary

∂ZΦh(t,M(t))︸ ︷︷ ︸
PDF at boundary

. (A.10)
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This is consistent with the solution to the ODEs in equations Main (7) and (8) at Z = M(t).
Normalizing and substituting from (A.2),

S`(t) = g(t)∂zF`(t, 0) (A.11)
Sh(t) = (g(t)− γ)∂zFh(t, 0) (A.12)

Normalizing the Value Function Define the normalized value of the firm as,

vi(t, log(Z/M(t))) ≡ Vi(t, Z)
M(t) (A.13)

Rearrange and differentiate (A.13) with respect to t

∂tVi(t, Z) = M ′(t)vi(t, log(Z/M(t)))−M ′(t)∂vi(t, log(Z/M(t))
∂z

(A.14)

+M(t)∂vi(t, log(Z/M(t))
∂t

Divide by M(t) and use the definition of g(t)

1
M(t)∂tVi(t, Z) = g(t)vi(t, z)− g(t)∂zvi(t, z) + ∂tvi(t, z) (A.15)

Differentiate (A.13) with respect to Z and rearrange

1
M(t)∂ZVi(t, Z) = 1

Z
∂zvi(t, z) (A.16)

Divide Main (2) by M(t) and then substitute from (A.15) and (A.16),

r
1

M(t)Vh(t, Z) = Z

M(t) + γ
M(t)
M(t)

Z

Z
∂zvh(t, z) + g(t)vh(t, z)− g(t)∂zvh(t, z)

+ λh(v`(t, z)− vh(t, z)) + η

M(t)(V`(t, Z̄(t))− Vh(t, Z)) + ∂tvh(t, z)

(A.17)

Use (A.13) and the definition of z and rearrange,

(r − g(t))vh(t, z) = ez + (γ − g(t))∂zvh(t, z) + λh(v`(t, z)− vh(t, z))
+ η(v`(t, z̄(t))− vh(t, z)) + ∂tvh(t, z) (A.18)
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Similarly, for Main (1)

(r − g(t))v`(t, z) = ez − g(t)∂zv`(t, z) + λ`(vh(t, z)− v`(t, z)) (A.19)
+ η(v`(t, z̄(t))− v`(t, z)) + ∂tv`(t, z)

Optimal Stopping Conditions Recall that we are solving the general problem with
draws to Φ̂i(t, Z) which nests our benchmark model. Divide the value-matching condition
in Main (4) by M(t),

Vi(t,M(t))
M(t) =

∫ Z̄(t)

M(t)

V`(t, Z)
M(t) ∂ZΦ̂`(t, Z)dZ +

∫ Z̄(t)

M(t)

Vh(t, Z)
M(t) ∂ZΦ̂h(t, Z)dZ − M(t)

M(t)ζ

(A.20)

Use the substitutions in (A.2) and (A.13), and a change of variable z = log(Z/M(t)) in
the integral, which implies that dz = 1

Z
dZ. Note that the bounds of integration change to

[log(M(t)/M(t)), log(Z̄(t)/M(t))] = [0, z̄(t)]

vi(t, 0) =
∫ z̄(t)

0
v`(t, z)dF̂`(t, z) +

∫ z̄(t)

0
vh(t, z)dF̂h(t, z)− ζ (A.21)

Evaluate (A.16) at Z = M(t), and substitute this into Main (6) to give the smooth-pasting
condition

∂zvi(t, 0) = 0 (A.22)

A.2 Exogenous Markov Innovation

Rather than the log utility in the main paper, here we use a general firm discount rate r.

Proof of Main Proposition 1. Define the following to simplify notation,

α ≡ (1 + λ̂)S − η
g

(A.23)

λ̂ ≡ λ`
η + λh

(A.24)

λ̄ ≡ r − g + λ` + λh
r − g + λh

(A.25)

ν = r − g + η

g
λ̄ (A.26)

Solve for Fh(z) in Main (13),

Fh(z) = λ̂F`(z) (A.27)

4



Substitute this back into Main (12) to get an ODE in F`

0 = gF ′`(z) + (S − η)(1 + λ̂)F`(z) + ηH (z − z̄)− S (A.28)

Solve this ODE using F`(0) = 0

F`(z) =


S

(S−η)(1+λ̂)(1− e
−αz) 0 ≤ z < z̄

S
(S−η)(1+λ̂)(1− e

−αz̄) z = z̄
(A.29)

This function is continuous at z = z̄, and therefore so is Fh(z). The unconditional distribu-
tion is,

F (z) = (1 + λ̂)F`(z̄) (A.30)

= S

S − η
(1− e−αz) (A.31)

Use the boundary condition that F (z̄) = 1, and solve for z̄ with the assumption that S > η,

z̄ = log(S/η)
α

(A.32)

The PDF of the unconditional distribution is,

F ′(z) = αS

S − η
e−αz (A.33)

To solve for the value, solve Main (19) for vh(z),

vh(z) = ez + (λh − η)v`(z) + ηv`(z̄)
r − g + λh

(A.34)

Substitute into Main (18) and simplify

(r − g + η)v`(z) = ez + ηv`(z̄)− g

λ̄
v′`(z) (A.35)

Solve Main (21) with (A.35) and simplify,

v`(z) = λ̄

g + (r + η − g)λ̄
ez + η

r − g + η
v`(z̄) + 1

(r + η − g)(ν + 1)e
−zν

(A.36)
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Evaluate (A.36) at z̄ and solve for v`(z̄),

v`(z̄) =
(
− η

g − r
+ 1

)(
ez̄λ̄

g + (η + r − g)λ̄
+ e−νz̄

(η + r − g)(ν + 1)

)
(A.37)

Subtitute (A.37) into (A.36) to find an expression for v`(z)

v`(z) = λ̄

g(1 + ν)

(
ez + 1

ν
e−νz + η

r − g

(
ez̄ + 1

ν
e−νz̄

))
(A.38)

Substitute (A.33) and (A.38) into the value-matching condition in Main (20) and evaluate
the integral,

ζ + 1
r − g

=
Sαλ̄

(
− e−νz̄(−1+e−αz̄)η

(−g+r)αν + ez̄η(e−αz̄−1)
α(g−r) + −e−(α+ν)z̄+1

ν(α+ν) + −ez̄−αz̄+1
α−1

)
g(S − η)(ν + 1)

(A.39)

To find an implicit equation for the equilibrium S, take (A.39) and substitute for α and z̄
from (A.23) and (A.32)

A.3 No Equilibrium Exist with g < γ and η > 0

With the equilibrium in Main Proposition 1, while the g ≤ γ comes directly from assuming
an initial condition with finite support, this section demonstrates that the g < γ equilibrium
do not exist for any η > 0.

Proof of Uniqueness of Main Proposition 1. In order to demonstrate that there are no sta-
tionary equilibrium with g < γ and η > 0, we will do a proof by contradiction: (1) assume
there is some constant g < γ which is the consumer’s optimal choice (i.e. balancing adoption
costs and benefits); (2) use the constant g to calculate the expectation of the stationary pro-
ductivity distribution; (3) show that the mean cannot be stationary relative to the adoption
costs, and hence the g(t) cannot have been an optimal choice.

Prior to finding the evolution of the moments, we need to be careful of exactly where
agents are removed from the distribution, so replace the S in the CDF with the heaviside
function removing at the threshold log(M(t)/M(t)) = 0, i.e. SH (z). Take the normali-
zed version in (A.7) and (A.8) and instead work in PDFs in order to later take a Laplace
transformation. We maintain the assumption of a constant g and S with draws from the
unconditional F (t, ·). Use that the derivative of the Heaviside is the dirac-delta, δ (·), to
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find,

∂tf`(t, z) = g∂zf`(t, z) + (S − λ` − η)f`(t, z) + (S + λh)fh(t, z)− Sδ (z) + ηδ (z − z̄)
(A.40)

∂tfh(t, z) = (g − γ)∂zfh(t, z) + λ`f`(t, z)− (λh + η)fh(t, z) (A.41)

Here, after differentiating, we have the dirac-delta, δ (z), in (A.40) to remove those adopting
agents at the threshold (which was normalized to z = 0), and the insertion of η arrival rate
of agents at z̄.

Taking inspiration from Gabaix et al. (2016), use the bilateral Laplace transform on the z
variable to the new ξ space, such that Fi(t, ξ) ≡

∫∞
−∞ e

−ξzfi(t, z)dz. Applying this transform
to the ODEs in (A.40) and (A.41) gives,2

∂tF`(t, ξ) = gξF`(t, ξ) + (S − λ` − η)F`(t, ξ) + (S + λh)Fh(t, ξ)− S + ηe−z̄ξ (A.42)
∂tFh(t, ξ) = (g − γ)ξFh(t, ξ) + λ`F`(t, ξ)− (η + λh)Fh(t, ξ) (A.43)

From Gabaix et al. (2016) equation (16), evaluating at ξ = −1 are the moments of the
Z/M(t) distribution. Hence, to be a stationary first moment (for a given z̄), substitute into
a time-invariant (A.42) and (A.43) to find,

0 = −gF`(t,−1) + (S − λ` − η)F`(t,−1) + (S + λh)Fh(t,−1)− S + ηez̄

(A.44)

0 = −(g − γ)Fh(t,−1) + λ`F`(t,−1)− (η + λh)Fh(t,−1) (A.45)

Solve this algebraic system of equations for F`(t,−1) and Fh(t,−1) and then use the linearity
of the Laplace transform to find F(t,−1) = F`(t,−1) + Fh(t,−1),

Et [Z/M(t)] = F(t,−1) = g − γ + η + λh + λ`
(g − S + η)(g − γ + η + λh)− λl(S − g + γ − η)

(
ηez̄ − S

)
(A.46)

Since g < γ by assumption, from (D.40), limt→∞ z̄(t) = ∞. Therefore, (A.46) diverges for
any η > 0, proving that the mean of the distribution cannot be stationary if z̄ →∞.

To finish the proof by contradiction, recall that the change of variables to z ≡ log(Z/M(t))
was already normalized relative to M(t), and hence is normalized relative to the adoption
cost, ζM(t). Furthermore, since v`(z) > z, Main (20) cannot hold with equality at all

2Most of the transformation comes through using the linearity of the operator, and the general formula
that the bilateral Laplace transform of a derivative. That is, using a simple notation: L{f ′(z)} = ξF(ξ).
The other important formula is that L{δ (z − c)} = e−cξ, and L{δ (z)} = 1
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points. Therefore, we have the contradiction that M(t) leading to the g cannot have been
optimal.

A.4 Common Adoption Threshold for All Idiosyncratic States

Proof. This section derives sufficient conditions for heterogeneous firms to choose the same
adoption threshold. It is kept as general as possible to nest both the exogenous and endo-
genous versions of the model.

Allow for some discrete type i, and augment the state of the firm with an additional
state x (which could be a vector or a scalar). Assume that there is some control u that
controls the infinitesimal generator Qu of the Markov process on type i and, potentially, x.3

Also assume that the agent can control the growth rate γ̂ at some cost. The feasibility set
of the controls is (u, γ̂) ∈ U(t, i, z, x). The cost of the controls for adoption and innovation
have several requirements for this general property to hold: (a) the net value of searching,
vs(t), is identical for all types i, productivities z, and additional state x, (b) the minimum of
the cost function is 0 and in the interior of the feasibility set: min

(γ̂,u)∈U(t,i,z,x)
c(t, z, γ̂, i, x, u) =

0, for all t, x, i; and (c) the value of a jump to the frontier, v̄(t), is identical for all agent
states (e.g. v̄(t) = v`(t, z̄(t)) = vh(t, z̄(t))).4

Let flow profits be potentially type-dependent, πi(t, z, x), but require that π(t, 0) ≡ πi(t, 0, x)
is identical for all i and x. Then, the normalization of the firm’s problem gives the following
set of necessary conditions:

(r − g(t))vi(t, z, x) = max
(γ̂,u)∈U(·)

{
πi(t, z, x)− c(t, z, γ̂, i, x, u) + (γ̂ − g)∂vi(t, z, x)

∂z

+∂vi(t, z, x)
∂t

+ ei ·Qu · v(t, z, x) + η(v̄(t)− vi(t, z, x))
}

(A.47)

vi(t, z(t, i, x), x) = vs(t) (A.48)
∂vi(t, z(t, i, x), x)

∂z
= 0, (A.49)

where z(t, i, x) is the normalized search threshold for type i and additional state x. To
prove that these must be identical, we will assume that z(t, i, x) = 0 for all types and

3Ordering the states as {l, h}, the infinitesimal generator for this continuous-time Markov chain is

Q =
[
−λ` λ`

λh −λh

]
, with adjoint operator Q∗. The KFE and Bellman equations can be formally derived

using these operators and the drift process.
4Without this requirement, firms may have differing incentives to “wait around” for arrival rates of jumps

at the adoption threshold. A slightly weaker requirement is if the arrival rates and value are identical only
at the threshold: η(t, 0, ·) and v̄(t, 0, ·) are idiosyncratic states.
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additional states, and show that this leads to identical necessary optimal stopping conditions.
Evaluating at z = 0,

vi(t, 0, x) = vs(t) (A.50)
∂vi(t, 0, x)

∂z
= 0. (A.51)

Note that equations (A.50) and (A.51) are identical for any i and x. Substitute equations
(A.50) and (A.51) into equation (A.47) to obtain

(r − g(t))vs(t) = max
(γ̂,u)∈U(·)

{π(t, 0)− c(t, z, γ̂, i, x, u) + ei ·Qu · vs(t) + η(v̄(t)− vs(t)) + v′s(t)} .

(A.52)

Since in order to be a valid intensity matrix, all rows in Qu add to 0 for any u, the last term
is 0 for any i or control u,

(r − g(t))vs(t) = max
(γ̂,u)∈U(·)

{π(t, 0)− c(t, z, γ̂, i, x, u) + v′s(t) + η(v̄(t)− vs(t))} . (A.53)

The optimal choice for any i or x is to minimize the costs of the γ̂ and u choices. Given
that γ̂ only shows up as a cost, and our assumption that the cost at the minimum is 0 and
is interior,

(r − g(t))vs(t) = π(t, 0) + v′s(t) + η(v̄(t)− vs(t)) for all i. (A.54)

Therefore, the necessary conditions for optimal stopping are identical for all i, x, z, confirming
our guess. Furthermore, equation (A.54) provides an ODE for vs(t) based on aggregate g(t)
and v̄(t) changes. Solving this in a stationary environment gives an expression for vs in terms
of equilibrium g, v̄ and the common π(0),

v(0) ≡ vs = π(0) + ηv̄

r − g + η
(A.55)

Furthermore, note from equation Main (30) that π(0) = 1 for all variations of the model in
the body of the paper.

A.5 Limit of Draw Arrival Process

The following is a heuristic derivation of the law of motion and cost function for searching
which yields a conditional draw above the firm’s search threshold.

Instead of instantaneous draws, assume a firm choosing to adopt has an arrival rate of
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λ̄ > 0 of opportunities. While attempting to adopt, they pay a normalized flow cost of ζλ̄.
Note that we are scaling the flow cost by the arrival rate in order to take the limit and have
a finite expected value of search costs.

Furthermore, assume that the firm draws unconditionally from the z distribution in the
economy (rather than simply those above their current threshold), and starts with a ` type.
In the stationary equilibrium, as all agents start low, searching firms accept a draw if they
get above the normalized cutoff of 0. The proof will construct a limit where agents get a
successful draw above 0 in any infinitesimal time period, and hence draw from the conditional
distribution of z ≥ 0.

Define F`λ(z) and Fhλ(z) to be the CDFs of agents in the z < 0 region. As firms in the
region F`λ(z) are otherwise identical, define the mass of searching agents as F`λ(0). Assume
that agents have an unconditional draw of all z within the economy, then conditional on
a draw, the probability of escaping the F`λ(0) mass is (1 − F`λ(0) − Fhλ(0)). It is easily
shown that the the arrival rate of successful draws is then λ̄(1 − F`λ(0) − Fhλ(0)). The
distribution of waiting times until the first success is an exponential distribution with this
parameter. The survivor function is therefore: e−λ̄(1−F`λ(0)−Fhλ(0))t. Due to the total mass
of one, F`λ(0) + Fhλ(0)) ∈ (0, 1), so the survivor function is decreasing in t. F`λ(0) is
independent of the λ̄ arrival rate when taking limits as no agents enter this region from
successful searches. Taking the limit for any t, limλ̄→∞ e

−λ̄(1−F`λ(0)−Fhλ(0))t = 0. Therefore, in
the limit in equilibrium, F`λ(0) = 0 as measure 1 agents get a successful draw in any strictly
positive interval. The same arguments can be used to explain why Fhλ(0) = 0.

To ensure that the expected search costs in this limit are finite, calculate the present
discounted value of flow payments until the first success. This is the exponential distribution
with parameter λ̄(1− F`λ(0)− Fhλ(0)) and flow cost ζλ̄

E [search costs] =
∫ ∞

0

(∫ t

0
ζλ̄e−rsds

)
λ̄(1− F`λ(0)− Fhλ(0))e−λ̄(1−F`λ(0)−Fhλ(0))tdt

(A.56)

= λ̄ζ

r + λ̄(1− F`λ(0)− Fhλ(0))
(A.57)

Take the limit and use the result that F`λ(0) and Fhλ(0) converge to show

lim
λ̄→∞

E [search costs] = ζ (A.58)

Therefore, in the limit the model can have draws directly from above the current threshold,
with measure 0 remaining behind, and a cost for an instantaneous adoption of ζ. Since the
flow of adopters is of measure 0, whether the draw is from the conditional or unconditional
distribution is irrelevant.
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B Endogenous Markov Innovation

This builds on the previous section to add additional derivations for endogeneity. For brevity,
any equations that remain identical will be left out of the discussion.

Keep in mind that two things that change with endogeneity are the growth rate in the
innovation state, i.e. γ → γ(·), and the profits function due to licensing, i.e., ez → π(z).

B.1 Stationary BGP with Endogeneity

Proof of Main Propositions 3 and 4 . To create a stationary solution for the value function
define a change of variables,5

wi(z) ≡ e−zv′i(z) (B.1)

From (34) and (35),

w`(0) = wh(0) = 0 (B.2)

Differentiate (B.1) and reorganize ,

e−zv′′i (z) = w′i(z) + wi(z) (B.3)

Take the first order necessary condition of the Hamilton-Jacobi-Bellman equation in Main
(33), and reorganize

γ(z) = χ
2 e
−zv′h(z) (B.4)

Substitute this back into Main (33) to get a non-linear ODE,

(r − g)vh(z) = π(z)− gv′h(z) + χ
4 e
−zv′h(z)2 + λh(v`(z)− vh(z)) + η (v`(z̄)− vh(z))

(B.5)

Differentiate Main (32),

(r − g)v′`(z) = π′(z)− gv′′` (z) + λ`(v′h(z)− v′`(z))− ηv′`(z) (B.6)
5Our approach is to normalize and then substitute the FOC of the HJBE into the Bellman equation

to form a nonlinear ODE, which we can solve numerically using collocation methods as discussed in the
Computational Appendix. An alternative approach to solving the HJBE numerically might be to use upwind
finite difference methods as in Achdou et al. (2017).
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Multiply (B.6) by e−z and use (B.1) and (B.3) and Main (42).

(r + λ` + η − (1− ψ)gF ′(0))w`(z) = 1− gw′`(z) + λ`wh(z) (B.7)

Note that using (B.3),

e−z∂z
(
e−zv′h(z)2

)
= 2e−zv′′h(z)e−zv′h(z)−

(
e−zv′h(z)

)2
(B.8)

= 2wh(z)w′h(z) + wh(z)2 (B.9)

Differentiate (B.5), multiply by e−z, and use (B.1), (B.3) and (B.9) and Main (42)

(r + λh + η)wh(z) = 1−
(
g − χ

2wh(z)
)
w′h(z) + (λh + (1− ψ)gF ′(0))w`(z) + χ

4wh(z)2

(B.10)

From (B.4),

γ(z) = χ
2wh(z) (B.11)

g ≡ χ
2wh(z̄) (B.12)

Proof of Main Proposition 4 . For the case where η → 0, and z̄ → ∞, we can check the
asymptotic value comes from (B.1)

lim
z→∞

wi(z) = ci (B.13)

To find an upper bound on g, note that as wi(z) is increasing, the maximum growth rate
is as z̄ → ∞. In the limit, lim

z→∞
w′i(z) = 0 as wi(z) have been constructed to be stationary.

Furthermore, note that the maximum g from (B.12) is,

g = lim
z̄→∞

χ
2wh(z̄) = χ

2 ch (B.14)

Therefore, looking at the asymptotic limit of (B.7) and (B.10),

(r + λ` + η − (1− ψ)χ2 chF
′(0))c` = 1 + λ`ch (B.15)

(r + λh + η)ch = 1 +
(
λh + (1− ψ)χ2 chF

′(0)
)
c` + χ

4 c
2
h (B.16)

Given a F ′(0), (B.15) and (B.16) provide a quadratic system of equations cl and ch—and
ultimately g through (B.14). While analytically tractable given an F ′(0), this quadratic has
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a complicated solution—except if ψ = 0. For that case, define

λ̄ ≡ r + η + λ` + λh
r + η + λ`

(B.17)

Then, an upper bound on the growth rate with ψ = 1 and η > 0 is

g < λ̄(r + η)
[
1−

√
1− χ

λ̄(r + η)2

]
(B.18)

where if η = 0, the unique solution is,

g = λ̄r

[
1−

√
1− χ

λ̄r2

]
(B.19)

where a necessary condition for an interior equilibrium is

r >

√
χ

λ̄
(B.20)

B.2 Bargaining Derivation

Proof of Main Proposition 2 . From standard Nash bargaining, with a total surplus value of
v`(z), let v̂ be the proportion of the surplus obtained by the licensee and v`(z) − v̂ be the
proportion obtained by the licensor. As is apparent in (B.22), if ψ = 1, then the technology
is adopted for free and the licensee gains the entire value such that v̂(z) = v`(z).

The timing is that the adopting firm first pays the adoption cost and then, upon the
realization of the match, negotiations over licensing commence.

arg max
v̂

{
(v̂ − v(0))ψ(v`(z)− v̂)1−ψ

}
. (B.21)

Solving for the surplus split, the value for a licensee that matches a firm with productivity
z is,

v̂(z) = (1− ψ)v(0) + ψv`(z), (B.22)

while the licensor gains

v`(z)− v̂(z) = (1− ψ)(v`(z)− v(0)). (B.23)

There is an equal probability of adopting from any licensor and a unit measure of firms.
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Thus, the flow of adopters engaging any licensing firm is just the flow of adopters S = S`+Sh,

π(z) = ez + gF ′`(0) + (g − γ(0))F ′h(0)︸ ︷︷ ︸
Amount of Licensees

(1− ψ) (v`(z)− v(0))︸ ︷︷ ︸
Profits per Licensee

. (B.24)

Since the surplus split does not introduce state dependence to the cost of adopting,
the smooth-pasting condition is unchanged. However, since adopters may not gain the
full surplus from the newly adopted technology due to licensing costs, the value-matching
condition takes bargaining into account. Adapting Main (20), the value-matching condition
is

v(0) = 1
ρ

=
∫ ∞

0
[ψv`(z) + (1− ψ)v(0)]︸ ︷︷ ︸

Surplus with licensing

dF (z)− ζ. (B.25)

Rearranging, the value-matching condition is identical to that previously derived in Main
(20), but with a proportional increase in the adoption cost,

v(0) = 1
ρ

=
∫ ∞

0
v`(z)dF (z)− ζ

ψ
. (B.26)

C Example Parameter Values

See Table 1 for a summary of parameters used in examples.
We set γ = 0.02 to target a 2 percent growth rate and ρ = 0.01 to generate a real interest

rate of 3 percent.
Transition rates λh and λ` are chosen to roughly match firms’ growth-rates, with firms

growing faster than 5 percent annually labeled h types and all other firms labeled `-types.
While the transition rates are sensitive to the h-threshold growth rate, all resulting numerical
analysis is unchanged by wide variation in this threshold, as all calibrated transition rates
are high enough to suggest that there is little persistence in either state and that the process
essentially acts like iid growth rates.

Where appropriate, we target an approximate tail index of α = 2.12, which corresponds
to a tail parameter of 1.06 in the size or profits distribution used in Luttmer (2007) with a
typical markup. Since the model is not sensitive to the tails, this is not a sensitive parameter
but provides some discipline when jointly choosing the adoption and innovation costs.

We use z̄ = 1.61 (i.e., the frontier to minimum productivity ratio is 5). This ratio is
larger than the z̄ = 0.651 (1.92 ratio in levels) documented by Syverson (2011) between the
top and bottom decile within narrowly defined industries, and is closer to the 5:1 ratio found

14



Parameters Value/Target Calibration
{λ`, λh} {0.533074, 1.12766} Matches estimation of 2 state Markov transition matrix

for firm growth rates using Compustat with firms in SIC
2000-3999. Model is not sensitive to these parameters,
as long as they are not too low

ψ [0.5, 1.0] with 0.95 Matches median 5% royalties of large firms reported
from RoyaltySource in Kemmerer and Lu (2012)

ρ 0.01 Target interest rate r = .03 when g = 0.02
{χ, ζ} g = 0.02 and α = 2.12 Targets 2% growth rate, and an underlying tail parame-

ter of the firm size distribution of 1.06 (which translates
to α = 2.12 using the rough adjustment implied by mo-
nopolistic competition). Note: The growth rates are a
function of ψ and other parameters which are calibrated
separately.

{z̄, η} z̄ ∈ [0.651,∞] If η ≈ 0, then z̄ is set large enough for numerical stability
to approximate∞ (keeping in mind that ez̄ is the actual
multiplier on productivity of the frontier, so z̄ = 3.0
translates to a ratio of productivity of the frontier to
the threshold of 20.1.)

Table 1: Summary of Parameter Values

in Hsieh and Klenow (2009) in India and China. The qualitative results are not strongly
driven by this fact, as we look across various z̄ level.

D Equilibria without Leap-frogging (i.e. η = 0)

The assumption of a mall probability of adopting the frontier technology, η > 0, or taking
the limit η → 0, removes many of the difficulties associated with hysteresis associated with
this model. This self-contained section looks at the equilbria in the case of no leap-frogging
(i.e. η = 0).

D.1 Equilibrium with g > γ

If Φ(0, Z) has infinite-support, the normalized F (t, Z) will converge to a stationary distri-
bution as t → ∞. A continuum of stationary distributions exists; they are determined by
initial conditions (i.e. hysteresis), and each is associated with its own aggregate growth rate.
To characterize the continuum of stationary distributions, parameterize the set of solutions
by a scalar α. By construction, α will be the tail index of the unconditional distribution
F (z).

Let ~F (z) ≡
F`(z)
Fh(z)

.

15



Define 0,1, I as a vector of 0, 1, and the identity matrix and the following:

A ≡

 1
g
1

g−γ

 B ≡

 r+λ`−gg
−λ`

g

− λh
g−γ

r+λh−g
g−γ

 (D.1)

C ≡

gF ′`(0)+(g−γ)F ′h(0)−λ`
g

λh
g

λ`
g−γ

gF ′`(0)+(g−γ)F ′h(0)−λh
g−γ

 D ≡

F ′`(0)
F ′h(0)

 (D.2)

~F (z) ≡
F`(z)
Fh(z)

 v(z) ≡
v`(z)
vh(z)

 (D.3)

Proposition 1 (Stationary Equilibrium with Infinite Support and g > γ). There exists a
continuum of equilibria parameterized by α, which, by construction, is the tail index of F .
An equilibrium is determined by the g(α) that satisfies

1
ρ

+ ζ =
∫ ∞

0

[[
(I +B)−1

(
eIz + e−BzB−1

)
A
]T
e−CzD

]
dz (D.4)

and the parameter restrictions given in (D.23) to (D.26). The stationary distributions and
the value functions are given by:

~F (z) =
(
I− e−Cz

)
C−1D (D.5)

~F ′(z) = e−CzD (D.6)
~v(z) = (I +B)−1

(
eIz + e−BzB−1

)
A. (D.7)

Proof. For ease of exposition, in this section, we model the adoption technology as firms
copying both the type and productivity of their draw from the unconditional distribution.6

That is, the normalized adoption is no longer to become ` and draw from the unconditional
distribution. With this, the value-matching and KFEs become

v(0) = 1
ρ

=
∫ ∞

0
v`(z)dF`(z) +

∫ ∞
0

vh(z)dFh(z)︸ ︷︷ ︸
Adopt both i and Z of draw

−ζ (D.8)

0 = gF ′`(z)− λ`F`(z) + λhFh(z) + (S` + Sh)F`(z)− S` (D.9)
0 = (g − γ)F ′h(z)− λhFh(z) + λ`F`(z) + (S` + Sh)Fh(z)− Sh. (D.10)

6While an exactly correlated draw of the type and the productivity is not necessary here, you can proof
that independent draws for adopters of Z and the innovation type i have infinite-support equilibria only
with degenerate stationary distributions. The finite-support cases do not impose the same requirements.
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Then the equilibrium conditions can be written as a linear set of ODEs:

v′(z) = Aez −Bv(z) (D.11)
v′(0) = 0 (D.12)
~F ′(z) = −C ~F (z) +D (D.13)
~F (0) = 0 (D.14)

~F (∞) · 1 = 1 (D.15)

v`(0) = vh(0) =
∫ ∞

0

(
v(z)T · ~F ′(z)

)
dz − ζ (D.16)

Solve these as a set of matrix ODEs, where eAz is a matrix exponential. Start with (D.11)
and (D.12) to get,7

v(z) = (I +B)−1
(
eIz + e−BzB−1

)
A. (D.19)

Evaluate at z = 0,

v(0) = B−1A =
[
1/(r − g) 1/(r − g)

]
. (D.20)

Then (D.13) and (D.14) gives

~F (z) =
(
I− e−Cz

)
C−1D. (D.21)

Take the derivative,

~F ′(z) = e−CzD. (D.22)

For (D.19) and (D.21) to be well defined as z →∞, we have to impose parameter restrictions
that constrain the growth rate g so that the eigenvalues of B and C are positive or have

7The equation ~F ′(z) = AF (z) + b subject to ~F (0) = 0 has the solution,

~F (z) =
(
eAz − I

)
A−1b. (D.17)

The derivation of these results uses that
∫ T

0 etAdt = A−1 (eTA − I
)
. With appropriate conditions on eigen-

values, this implies that
∫∞

0 etAdt = −A−1.
Equations of the form, v′(z) = Aez −B · v(z) with the initial condition v′(0) = 0 have the solution,

v(z) = (I +B)−1 (eIz + e−BzB−1)A. (D.18)

This derivation exploits commutativity, as both eBz and (I +B)−1 can be expanded as power series of B.
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positive real parts. Sl and Sh are defined in equations Main (16) and (17) in terms of F ′l (0)
and F ′h (0) , C and B will have roots with positive real parts iff their determinant and their
trace are strictly positive. For C it is straightforward to compute that the conditions for a
positive trace and determinant are

Sl + Sh >
(g − γ)λl + gλh

(g − γ) + g
(D.23)

Sh + Sl > λh + λl (D.24)

and for B the corresponding conditions are

r > g > γ (D.25)
r − g + λh + λl > 0. (D.26)

With these conditions imposed, we can proceed to characterize the solutions to the value
functions and the stationary distribution.

Evaluate (D.22) at z = 0,

~F ′(0) = D. (D.27)

Take the limit of (D.21)

~F (∞) = C−1D (D.28)

and (D.15) becomes

1 = C−1D · 1. (D.29)

We can check that, by construction, with the C and D defined by (D.2), (D.29) is fulfilled
for any F ′`(0), F ′h(0), λ`, and λh.

For ~F ′(z) to define a valid PDF it is necessary for ~F ′(z) > 0 for all z. It can be shown, that
for C > 0, the only D > 0 fulfilling this requirement is one proportional to the eigenvector
associated with the dominant eigenvalue of C.8 The unique constant of proportionality is

8Since C > 0 and irreducible (in this case off diagonals not zero), then by Perron-Frobenius it has a
simple dominant real root α and an associated eigenvector ν > 0. Hence, as ~F (0) = 0, F`(∞) + Fh(∞) = 1,
and ~F ′(z) > 0, we have a valid PDF. This uniqueness of the ν solution only holds if the other eigenvector of
C has a positive and negative coordinate, which always holds in our model.
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determined by (D.29). The two eigenvectors of C fulfilling this proportionality are,

νi ≡

−F ′h(0)

(
γ(g−γ)F ′

h
(0)±

√
2(g−γ)λl

(
γ

(
g

(
F ′
h

(0)+F ′
l

(0)
)
−γF ′

h
(0)
)

+gλh
)

+
(
γ

(
g

(
F ′
h

(0)+F ′
l

(0)
)
−γF ′

h
(0)
)
−gλh

)
2+(g−γ)2λl2+γgF ′

l
(0)−gλh+gλl−γλl

)
2gλl

F ′
h

(0)


(D.30)

Denote ν as the eigenvector with both positive elements–which is associated with the do-
minant eigenvalue–then as discussed above, D ∝ ν. Use (D.2) and (D.30), and note the
eigenvector has already been normalized to match the second parameter.

D = ν. (D.31)

The 2nd coordinate already holds with equality by construction, for the first coordinate
equating (D.2) and (D.30). Equate the first parameter and choose the positive eigenvector,

F ′
`
(0) = (D.32)

−
F ′
h

(0)
(
γ(g−γ)F ′

h
(0)−

√
2(g−γ)λl(γ(g(F ′h(0)+F ′

l
(0))−γF ′h(0))+gλh)+(γ(g(F ′h(0)+F ′

l
(0))−γF ′h(0))−gλh)2+(g−γ)2λl2+γgF ′

l
(0)−gλh+gλl−γλl

)
2gλl

Solve this equation for F ′`(0) and choose the positive root

F ′`(0) = F ′h(0)λh
γF ′h(0) + λ`

. (D.33)

We can check that with the C and D defined by (D.2), (D.29) is fulfilled by construction.
The value-matching in (D.16) becomes,

1
r − g

+ ζ =
∫ ∞

0

[[
(I +B)−1

(
eIz + e−BzB−1

)
A
]T
e−CzD

]
dz. (D.34)

Note that if B has positive eigenvalues, then limz→∞ v (z) = (1 +B)−1 (ez)A. Therefore, as
long as C has a minimal eigenvalue (defined here as α), strictly greater than one, the integral
is defined.

The tail index of the unconditional distribution, F (z) ≡ F`(z) + Fh(z) can be calculated
from the C matrix in (D.22). As sums of power-law variables inherit the smallest tail index,
the endogenous power-law tail is minimum eigenvalue of C. After the substitution for F ′`(0)
from above, the smallest eigenvalue of C is

α ≡ ((g − γ)F ′h(0)− λl) (γ(g − γ)F ′h(0) + g (λh + λl)− γλl)
g(g − γ) (γF ′h(0) + λl)

. (D.35)
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Solve (D.35) for F ′h(0) as a function of α,

F ′h(0) =
g
(
αγ − λh +

√
(λh − αγ) 2 + 2λl (αγ + λh) + λl2 − λl

)
+ 2γλl

2γ(g − γ) . (D.36)

Substitute for F ′i (0) into C and D to get a function in terms of g and α,

C =

−αγ+2αg+λh+
√

(λh−αγ)2+2λl(αγ+λh)+λl2−λl
2g

λh
g

λl
g−γ

−αγ+2αg−λh+
√

(λh−αγ)2+2λl(αγ+λh)+λl2+λl
2(g−γ)


(D.37)

D =


λh

(
g

(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2−λl

)
+2γλl

)
γg

(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2+λl

)
g

(
αγ−λh+

√
(λh−αγ)2+2λl(αγ+λh)+λl2−λl

)
+2γλl

2γ(g−γ)

 (D.38)

While both F ′i (0) could conceivably parameterize a set of solutions for each g, they are
constrained by the eigenvector proportionality condition, which ensures that the manifold of
solutions is 1 dimensional.

To interpret the expressions: (D.5) shows that the positivity of the tail index α is now
equivalent to C having positive eigenvalues. For the decomposition of the option value, (D.7)
shows that positive eigenvalues of B ensure the option values in the vector v(z) converges
to 0 as z increases.

In this section, the stationary distribution is a vector ~F (z) solving (D.9) and (D.10) , a
system of linear ODEs. If we define the unconditional distribution F (z) ≡ F`(z) + Fh(z),
and if both F`(z) and Fh(z) are power-laws, any mixture of these distributions inherits the
smallest (i.e. thickest) tail parameter (as discussed in Gabaix (2009)). Since there are now
two dimensions of heterogeneity, the tail index, α, is defined as that of the unconditional
distribution, F (z). The ODE solution for the vector ~F (z) given in Proposition 1 by (D.5)
will depend on the roots of C (both positive). The smallest root of C, representing the slower
rate of decay for both elements of F (z), is the tail index α by the construction.

In Proposition 1 the initial condition F ′ (0) is a vector, so in principle this raises the pos-
sibility that the continuum of stationary equilibria could be two dimensional, parametrized
by F ′`(0) > 0 and by F ′h(0) > 0. However as shown this is not possible since the only initial
condition that ensures that F`(z) and Fh(z) remain positive and satisfy (D.9) and (D.10) is
exactly the eigenvector of C corresponding to its dominant (Frobenius) eigenvalue. Since the
eigenvector is determined only up to a multiplicative constant, the continuum of stationary
distributions is therefore one dimensional. We use the smallest eigenvalue of C, defined as
the tail index α, to solve for F ′h (0), which then determines F ′` (0) from the eigenvector re-
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striction. This then allows us to obtain the expressions for C and D in terms of parameters,
α and g. Then value-matching, (D.16) and (D.34), gives us expression (D.4) to define g in
terms α, so we end up with a continuum of stationary equilibria parametrized by α.

D.2 Equilibrium with g ≤ γ

With the infinite support initial condition, g > γ was a possibility. Here we show that either
infinite or finite support initial conditions can also lead to g ≤ γ (including the η → 0 limit
we take which leads to the g = γ case).

Crucially here, the g < γ equilibrium exist with both the infinite and finite initial con-
ditions, which demonstrates that while an assumption of infinite support can lead to “unre-
asonable” growth rates above the maximum firm innovation rate, it does not need to. For
the g < γ equilibria, starting from an infinite or finite support initial condition is irrelevant.

The weak bound on g ≤ γ is easy to see when starting from a finite initial support.
Assume the support is finite, assume by contradiction there exists an optimally chosen g > γ

and Z̄ < ∞. Note that M(t) = M(0)egt and Z̄(t) = Z̄(0)eγt, so for any initial conditions
M(T ) > Z̄(T ) for all t greater than some T . That is, the distribution compresses until it is
a point at which point the minimum and maximum of support switch.

Proposition 2 (Equilibrium with g < γ). For both a infinite- and finite-support initial
conditions, there exists a continuum of equilibrium parameterized by α > 1, which, by con-
struction, is the tail index of the productivity distribution. An equilibrium is determined by
the aggregate growth rate g(α) < γ that satisfies

1
ρ

+ ζ = a2b1

(
a3

α + β2
− a3b2

ᾱ + β2
− 1
α + β1

+ b2

ᾱ + β1

)
+ a1b1

(
1

1− α + b2

ᾱ− 1

)
(D.39)

given a1, a2, a3, b1, b2, β1, β2, and ᾱ defined in (D.44), (D.49) to (D.51) and (D.53) to (D.55).
Parameter restrictions are given in (D.57), (D.61) and (D.62).

Proof. Unlike the case with a infinite-support and g > γ in Proposition 1, we can use the
simple case of draws are from the unconditional distribution and all agents ended up ` (as
in our baseline η > 0 model).

Given our g < γ assumption, Sh = 0 as no agents in the high state will cross the
barrier. For the support of the distribution, the minimum of support has been normalized to
log(M(t)/M(t)) = 0. The maximum of support starts at log(Z̄(0)/M(0)) ≡ z̄(0) and grows
as z̄(t) = log

(
z̄(0) eγt

egt

)
or

z̄(t) = z̄(0) + (γ − g)t (D.40)
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Hence, asymptotically, limt→∞ z̄(t) = ∞ given our γ > g assumption. Alternatively, if
Z̄(0) = ∞, then this solution fully nests the g < γ case as well. Following the notation of
Proposition 1 as much as possible, define

A ≡

 1
g
1

γ−g

 B ≡

 r+λ`−gg
−λ`

g

− λh
γ−g

r+λh−g
γ−g

 (D.41)

C ≡

f`(0)− λ`
g

f`(0) + λh
g

−λ`
γ−g

λh
γ−g

 D ≡

F ′`(0)
0

 (D.42)

Otherwise, the ~F (z), and v(z) are identical to those in (D.1) and (D.2), and the ODEs for
the KFE and the value function fulfill the same (D.11) to (D.15).9 The only change in A

and B from the previous definition was to swap the order to γ − g. Under these definitions,
the matrix A and the eigenvalues of B are positive.

As we have unconditional draws ending up with the ` type, the value-matching condition
is replaced with the standard one, as in Main (20)

v`(0) = vh(0) =
∫ ∞

0
v`(z)F ′(z)dz − ζ (D.43)

The other matrices and generic solutions to the ODEs for the v(z) and F (z) are identical
to those in (D.19), (D.21) and (D.22).

In order to better parameterize the solutions, reorganize the algebra to be in terms of the
asymptotic tail parameter of the distribution, α, instead of F ′`(0). Using this, there may be
a continuum of {g, α} which generate stationary distributions (and have an accompanying
F ′`(0)). Define the following,

ᾱ ≡ λh
γ − g

− λ`
g
− αγλ`
g (λ` + λh − α(γ − g)) (D.44)

F ′`(0) ≡ α

(
1− γλ`

g (−(γ − g)α + λh + λ`)

)
(D.45)

= α + ᾱ− λh
γ − g

+ λ`
g

(D.46)

Here, {α, ᾱ} are the eigenvalues of the matrix C, ordered so that ᾱ > α

9Unlike the infinite horizon case with g > γ, we no longer require an argument based on Perron-Froebenius
in the proof. The reason is that F ′h(0) = 0 trivially, so the manifold of the solution in {g, F ′`(0)} is already
of the correct dimension.
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Take the solution (D.22) and expand using the constant definitions above,

~F ′(z) =
α
(
λh −

(
γ
g
− 1

)
λ` − (γ − g)α

)
(γ − g) (ᾱ− α)

1
λh + λ` − α(γ − g)

×

(λh − α(γ − g)) e−αz − (λh − ᾱ(γ − g)) e−ᾱz

λ` (e−αz − e−ᾱz)

 (D.47)

The solution for the unconditional PDF, F ′(z) ≡ F ′`(z) + F ′h(z), is,

F ′(z) = b1
(
e−αz − b2e

−ᾱz
)

(D.48)

Where,

b1 ≡
α
(
−α(γ − g) +

(
1− γ

g

)
λl + λh

)
(ᾱ− α)(γ − g) (D.49)

b2 ≡
ᾱ(g − γ) + λh + λl
α(g − γ) + λh + λl

(D.50)

To solve the value function in (D.21), first define the value β1 and β2 as,

β1/2 ≡ −
−g(γ−λh+λl)±

√
(g λh+(γ−g)λl+γ(r−g))2+4g (g−γ)(g−r)(g−λh−λl−r)+γ (λl+r)

2g(g−γ) (D.51)

Using the eigenvectors and eigenvalues, the matrix exponential in (D.19) can be written
through a standard eigendecomposition with the eigenvalues β1, β2 and associated eigenvec-
tors. Use this technique and rearrange (D.19) to find,

v`(z) = a1e
z + a2

(
e−β1z − a3e

−β2z
)

(D.52)

where,

a1 ≡
γ − 2g + λh + λl + r

−2g (λl + r) + r (γ + λh + r) + λl(γ + r) (D.53)

a2 ≡
(−β2γ + (β2 − 1) g + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (g (β1 − 1) + λh − γβ1 + r))

(g − γ)(r − g)λh (β1 − β2) (−2g (λl + r) + r (γ + λh + r) + λl(γ + r))
(D.54)

a3 ≡
(g (β1 − 1)− γβ1 + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (−β2γ + (β2 − 1) g + λh + r))
(−β2γ + (β2 − 1) g + r) ((g − γ)λhλl + g (−γ + 2g − λh − r) (g (β1 − 1) + λh − γβ1 + r))

(D.55)

To finalize the solution, for any given α within the set of admissible parameters, substitute
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(D.48) and (D.52) into (D.43) and solve as an implicit function of g. Substitute and simplify
to find,

1
r − g

= a2b1

(
a3

α + β2
− a3b2

ᾱ + β2
− 1
α + β1

+ b2

ᾱ + β1

)
+ a1b1

(
1

1− α + b2

ᾱ− 1

)
− ζ

(D.56)

For a given α (or, equivalently, a g), this implicit equation provides a solution for the
corresponding g given all of the g and α dependent constants in (D.44), (D.49) to (D.51)
and (D.53) to (D.55).

Parameter Restrictions A set of parameter restrictions are required to ensure that
F ′(z) > 0 and that the eigenvalues of both B and C are strictly positive to ensure a non-
explosive root.

To ensure that the PDF is positive at every point in (D.48), note that since ᾱ > α, the
term 0 < λ`+λh−(γ−g)ᾱ

λ`+λh−(γ−g)α < 1 is positive as long as λ` + λh − (γ − g)ᾱ > 0. Similarly, for
F ′`(z) > 0 in (D.47), a requirement is that 0 < λh−(γ−g)ᾱ

λh−(γ−g)α < 1 and λh − (γ − g)ᾱ > 0, which
reduce to

g > γ − λ` + λh
α

(D.57)

Note that the thicker the tail (i.e. smaller α), the greater the range of possible g to match
the α.

For (D.21) to be well defined as z → ∞, we have to impose parameter restrictions that
constrain the growth rate g so that the eigenvalues of C are positive or have positive real
parts. Note that,

det {C} = λh + λ`
γ − g

f`(0) > 0 (D.58)

And,

Trace {C} = f`(0) + λh
γ − g

− λ`
g

(D.59)

Hence, since the determinant is positive, a necessary condition for C to have two positive
eigenvalues is for

f`(0) > λ`
g
− λh
γ − g

(D.60)

From (D.22) we see that ~F ′(0) = D and fh(0) = 0. If C does have two positive eigenva-
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lues, then from (D.21), ~F (∞) = 1
λ`+λh

[
λh λ`

]
, which fulfills F (∞) = 1.

With the new constants, the condition in (D.60) to ensure positive eigenvalues becomes,

α <

√√√√(λh + λl) (g (λh + λl)− γλl)
g(g − γ)2 (D.61)

Furthermore, as α has been constructed to be the smallest eigenvalue, and hence is the tail
parameter, a necessary condition to have a finite mean is that α > 1. From this, the g in
equilibrium must fulfill,

2g (λh + λl) >
√

4g2(g − γ)2 + γ2λ2
l + γλl (D.62)

To ensure that the eigenvalues of B are positive, and hence vi(z) is well-defined, note that
the determinant of B is always positive, and the trace of B requires g < γ(r+λ`)

γ−λh+λ`
. However,

in practice this upper-bound is greater than γ.
To summarize: the key conditions parameter restrictions are, (D.57), (D.61) and (D.62)

As an example of this equilibrium, Figure 1 plots the equilibrium growth rate as a function
of α. For smaller α values, the growth rate approaches γ = 0.02

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8
0

0.005

0.01

0.015

0.02
g(α)

α

Figure 1: Exogenous g < γ examples, for various α > 1

In addition to the g < γ equilibrium, consider the g = γ which cannot be nested since
the ODE becomes a DAE when g = γ. This is also the unique, limiting solution as η → 0.

Proposition 3 (Stationary Equilibrium with g = γ and η = 0). There exists a unique
maximum growth equilibrium with g = γ and z̄ → ∞. The unique maximum g stationary
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distribution is,

F`(z) = 1
1+λ̂

(
1− e−αz

)
(D.63)

Fh(z) = λ̂F`(z), (D.64)

where α is the tail index of the power-law distribution:

α ≡ (1 + λ̂)F ′`(0), (D.65)

and F ′`(0) is determined explicitly by model parameters:

F ′
`

(0)=

λh

(
ζ(ρ+γ)((ρ+γ)+λh+λ`)−

√
ζ

((
4γ+(ρ+γ)2ζ

)
(−γ+(ρ+γ)+λh)2+2(−2γ+(γ−(ρ+γ))(ρ+γ)ζ)(γ−(ρ+γ)−λh)λ`+(γ−(ρ+γ))2ζλ`2

)
+ζγ22+ζ(−γ)(3(ρ+γ)+2λh+λ`)

)
γ2ζ(λh+λ`)(γ−(ρ+γ)−λh) .

(D.66)

The firm value functions are,

v`(z) = λ̄

γ + ρλ̄
ez + 1

ρ(ν + 1)e
−νz (D.67)

vh(z) = ez + λhv`(z)
ρ+ λh

, (D.68)

where ν is defined as

ν ≡ ρλ̄

γ
> 0. (D.69)

Proof. For the g < γ, see the nested solution in Proposition 2. Define the following to
simplify notation,

α ≡ (1 + λ̂)S
g

(D.70)

λ̂ ≡ λ`
λh

(D.71)

λ̄ ≡ λ`
r − g + λh

+ 1 (D.72)

ν = (r − g)λ̄
g

(D.73)

Take Main (13) at η = 0 and solve for Fh(z)

Fh(z) = λ̂F`(z) (D.74)
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Substitute into Main (12) at η = 0

S = gF ′`(z) +
(
λ̂+ 1

)
SF`(z) (D.75)

Solve this as an ODE in F`(z), subject to the F`(0) = 0 boundary condition

F`(z) = 1
1+λ̂

(
1− e−αz

)
(D.76)

We can check that if α > 0 the right boundary conditions hold

lim
z→∞

(F`(z) + Fh(z)) = 1 (D.77)

Differentiate (D.76),

F ′`(z) = α
1+λ̂e

−αz (D.78)

With (D.74), the PDF for the unconditional distribution, F (z),

F ′(z) = αe−αz (D.79)

Solve Main (19) for vh(z) with η = 0

vh(z) = ez + λhv`(z)
r − g + λh

(D.80)

Substitute into Main (12) to find an ODE in v`(z)

(r − g)v`(z) = ez + λhλ̂

(
−v`(z) + ez + λhv`(z)

r − g + λh

)
− gv′`(z) (D.81)

Use the constant definitions and simplify

(r − g)v`(z) = ez − gv′`(z)
λ̄

(D.82)

Solve this ODE subject to the smooth-pasting condition in Main (22) and simplify,

v`(z) = λ̄

g + (r − g)λ̄
ez + 1

(r − g)(ν + 1)e
−zν (D.83)

Use the definitions of the constants and (D.83)

v`(0) = 1
r−g (D.84)

27



Substitute (D.79), (D.83) and (D.84) into the value-matching condition in Main (20) and
simplify

1
r − g

=
∫ ∞

0

 ez(λ̄−α−
rλ̄
g )αg

(g − r)
(
−rλ̄+ g

(
λ̄− 1

)) + ez−zααλ̄

g + rλ̄− gλ̄

 dz − ζ (D.85)

Evaluate the integral,

ζ =
α
(
−rλ̄+ g

(
λ̄− α + 1

))
(g − r)

(
rλ̄+ g

(
α− λ̄

))
(α− 1)

− 1
(r − g)(ν + 1) −

λ̄

g + rλ̄− gλ̄

(D.86)

Substitute for α gives an implicit equation in S

0 = ζ +
g
(

1
r−g + λ̄

S−g+Sλ̂ −
λ̄

S−gλ̄+rλ̄+Sλ̂

)
−rλ̄+ g

(
λ̄− 1

) + 1
(r − g)(ν + 1) (D.87)

As g = γ in equilibrium, only S is unknown. This equation is a quadratic in S, and can be
written analytically in terms of model parameters as,

S =
λh

(
ζr(r+λh+λ`)−

√
ζ((4g+r2ζ)(−g+r+λh)2+2(−2g+(g−r)rζ)(g−r−λh)λ`+(g−r)2ζλ`2)+ζg22+ζ(−g)(3r+2λh+λ`)

)
2ζ(λh+λ`)(g−r−λh)

(D.88)

From this S, α can be calculated through (D.70), and the the rest of the equilibrium follows.

A final proof is to show that there do not exist any equilibria with a finite support where
the z̄ does not diverge. Here we generalize the draw distribution to be F (z)κ for κ > 0
(where the κ = 1 is our baseline) in order to demonstrate that this is not a knife-edge result
due to direct, unconditional draws from the distribution.

Proposition 4 (No Equilbria with Finite z̄ when η = 0). Generalize the model to support
draws from a distorted unconditional distribution, i.e. F (z)κ for κ > 0. For any κ, if η = 0
there do not exist any equilibira where the steady-state z̄ <∞.

Proof. First, note that if g < γ, then z̄ trivially diverges. Consider the g = γ case and define
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the following to simplify notation,

α ≡ (1 + λ̂)S
g

(D.89)

λ̂ ≡ λ`
λh

(D.90)

λ̄ ≡ λ`
r − g + λh

+ 1 (D.91)

ν = (r − g)λ̄
g

(D.92)

Reorganizing the KFEs,

Fh(z) = λ̂F`(z) (D.93)

Substitute into Main Paper (12) with η = 0 to form a first-order non-linear ODE in F`(z)

0 = S(1 + λ̂)κF`(z)κ + gF ′`(z)− S (D.94)

Rearrange,

F ′`(z) = S
g
− S

g
(1 + λ̂)κF`(z)κ (D.95)

This non-linear ODE is separable,

dz = dF`(z)
S
g
− S

g
(1 + λ̂)κF`(z)κ

(D.96)

Integrate,

z + C1 =
∫ F`

0

1
S
g
− S

g
(1 + λ̂)κqκ

dq (D.97)

Define the following function of q ∈ [0, 1], where 1F2(·) is the Hypergeometric function.10

10One definition for the Hypergeometric function is derived by simplifying Euler’s representation in its
integral form, is,∫ y

0

1
a+ bỹκ

dỹ = y

a
1F2(1, 1/κ, 1 + 1/κ;− b

ay
κ) (D.98)

The derivatives fulfill,

d
dp 1F2(a, b, c; p) = ab

c
1F2(a+ 1, b+ 1, c+ 1; p) (D.99)
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Q`(q) = g

S
q 1F2

(
1, 1/κ, 1 + 1/κ; (1 + λ̂)κqκ

)
(D.100)

Assume that Q`(q) has an inverse Q−1
` (·). Use (D.98) and (D.97) and (D.100),

z + C1 = Q`(F`(z)) (D.101)
F`(z) = Q−1

` (z + C1) (D.102)

From (D.100) and Main Paper (14), Q−1(C1) = 0. From (D.100), C1 = Q`(0) = 0. Since
C1 = 0 and F`(z) = Q−1

` (z) , Q`(q) is the quantile function for the random variable z.
To show that there doesn’t exist a bounded support solution, assume a z̄ <∞. Use Main

(15) and (A.27) to get:

F`(z̄) = 1
1+λ̂ (D.103)

Use the definition of Q`

z̄ = Q−1
` ( 1

1+λ̂) (D.104)

From (D.100)

z̄ = g

(1+λ̂)S 1F2 (1, 1/κ, 1 + 1/κ; 1) (D.105)

But, for any parameters, the Hypergeometric function is only defined on (−1, 1) and goes to
infinity on the boundaries, so 1F2 (·; 1) diverges. By contradiction, z̄ →∞ and there can be
no stationary equilibrium with bounded support.
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