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1 Theoretical Framework

1.1 The Model

This section will provide a theoretical framework that will elucidate the key
assumptions that underlie the rank-order test. The model is a simple adapta-
tion of Anwar and Fang (2006) and Park (2015). The conceptual framework
will provide more clarity on what precisely we can and cannot infer from ju-
dicial incarceration rates and ranks in regards to the role of statistical and/or
taste-based discrimination in generating the observed patterns in data.

To begin, offenders are either High or Low risk types in which High types
are more likely to re-offend and commit the types of crimes that are associated
with high social costs. We denote risk type by 7 € {H,L}. In addition,
offenders vary by gender which we denote by g € {M,W} where M and W
stand for men and women, respectively. The elements of a criminal case (e.g.
the severity of the crime, the offender’s criminal history, the type of counsel,
and etc.) is indexed by €. The distribution of 6, which we denote by f9(9),
varies with 7 and ¢ and satisfies the monotone likelihood ratio property such

that J;% ((g)) is strictly increasing in #. In words, offenders who are associated
with worse case facts have a higher relative likelihood of being a High versus
Low risk type.

Judges observe 6 and choose whether to sentence an offender to prison
or not. The judge does not, however, observe the offender’s true type 7. If
a judge “correctly” sentences a High type to prison, then the payoff is 1.
However, if a judge sentences a Low type to prison, then the judge incurs a
cost, ¢, where j indexes the judge. We can motivate ¢} several ways. For
example, the judge may prefer to reserve incarceration for the worst type of
criminals due to strong beliefs that Low types can better rehabilitate outside
of prison. In this setup, judge j’s expected net payoff to issuing a sentence
of prison is P(H|0) — P(L|0)c]. We normalize the expected net payoff to
issuing a sentence of probation to 0. This is innocuous since the difference
and not the level of expected utility affects choice. Applying Bayes Rule, it is
straightforward to show that the judge’s decision hinges on whether 6 is below

or above a threshold, 9;-7*, which is determined by the following expression:

where 77 denotes prior beliefs on 7. We now have the necessary elements
to formally define taste-based and statistical discrimination and illustrate the



underlying mechanics of the rank-order test. We will use graphical illustrations
to help visualize the key points.

Rank-Order Test of Taste-Based Discrimination *

In the model, judges are defined has having tastes for discrimination when
cé” =+ cJW. Figure A1 will illustrate how tastes for discrimination can lead to a
rank-order violation in judicial incarceration rates. The plot shows that judge
j does not have tastes for discrimination since cj-” = c}/v and thus, the marginal
male and female offender would receive the exact same sentence under judge j.
In contrast, judge j' is chivalrous towards women since c}/y > 0?7 . Notice that
because the judge’s decision rule is to sentence an offender to prison whenever
0 > 9;7*, the ordering of the judicial incarceration rates is not the same across
gender since v > 4}/ but vf; < 7] where 7 denotes the incarceration rate of
gender g offenders for judge j. It is straightforward to show that when judges
do not have tastes for discrimination, then a rank-order violation cannot arise.
This is true even if judges were to engage in statistical discrimination due
to the informative signal that gender may provide regarding the offender’s
risk type.! This motivates the rank-order test. If the rank-order of judicial
incarceration rates depends on gender, then this implies judges engage in taste-
based discrimination.

Key Assumptions of the Rank-Order Test

We will now briefly discuss the key assumptions.

e The MLRP plays an important role. Without it, the relative likelihood
of being a High versus a Low risk type is not necessarily a strictly
increasing function of #. In this case, the judge’s legal standard is not
uniquely determined and a rank-order violation could arise even in the
absence of tastes for discrimination.

e The assumption that the judicial costs of incarceration, c? , is indepen-
dent of # is important. Suppose, for example, that judge j prefers to issue
severe sentences for forgery, an offense disproportionately committed by
women, whereas judge j' prefers lenient ones. In this case, judge j may
incarcerate women at higher rates than judge j' and men at lower rates
than judge j' because of different sentencing preferences across crime
type rather than taste-based discrimination. If judges exhibit consider-
able non-monotonicity in sentencing preferences, then it is possible for
a rank-order violation to arise even in the absence of tastes for discrim-
ination.
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Figure Al: Rank-Order Test of Taste-based Discrimination
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Notes: IB and IC stand for incremental benefit and cost of incarceration, respectively.
c? reflects the cost that judge j incurs when sentencing a Low type to prison. This cost

is allowed to depend on the offender’s gender. Taste-based discrimination is defined as

g H
céw # c}’v. (9]9* denotes the threshold that determines the judge’s sentence. Finally, %
L

represents the relative likelihood that the offender is a High versus Low type. It can be
interpreted as the incremental benefit of sentencing an offender to prison.

e The gender difference in case composition across judges is important.
The rank-order of judicial incarceration rates will depend on gender if
some judges receive cases involving the High type women and Low type
men and others receive cases involving Low type women and High type
men.

The first assumption (e.g. the MLRP) seems reasonable to a first approx-
imation. The other two assumptions may not necessarily hold. In particular,
recent research shows that judges have non-monotonic sentencing preferences
which casts some doubt on the assumption that judicial cost functions are
independent of § (Mueller-Smith (2014)). However, notice that relaxing these
two assumptions should increase the likelihood of Type I error. The fact that
we cannot reject the null of no taste-based discrimination in our data implies
that these two forces are not sufficiently strong to generate a false rejection.?

Finally, while this has been pointed out in existing literature, we should

2If a researcher does find a rank-order violation in the data, then she should address
these potential confounds more systematically. To account for non-monotonic sentencing
preferences, a researcher could check whether the results are robust to “local” versions of
the test in which attention is restricted to specific types of criminal offenses.
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note that the rank-order test is a fairly conservative test of taste-based dis-
crimination. There are scenarios in which some or even all judges could have
tastes for discrimination but the rank-order of judicial incarceration rates will
not depend on gender. Consider, for example, the following ordering of judi-
cial costs ¢} > ¢}f > ¢}V > ¢/ which would imply the following ordering in
judicial incarceration rates ’y]W < 'yJM < ’yj”/ < 'yj‘{f . In this case, judge j’ incar-
cerates men and women at higher rates than judge j. Thus, our results should
be interpreted cautiously given that the rank-order test is a low-powered test
of discrimination.

1.2 Judicial Incarceration Rates

In this section, we would like to formally show why judicial incarceration
rates should all lie along the 45° line in the absence of gender discrimination
(both statistical and taste based). We will illustrate this point in the context
of the model outlined above.

Figure A2: Judicial Incarceration Rates in Absence of Discrimination
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Notes: IB and IC stand for incremental benefit and cost of incarceration, respectively. In
this example, neither judge has tastes for discrimination since cju = C}/V for both j and 5’
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and there is no incentive to statistically discriminate since “4r—F = “H——.
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Figure A2 shows a scenario in which neither judge has tastes for discrimi-
nation, since cj-” = c}/v for both judges, nor will any judge engage in statistical
discrimination as G L 4Ok
fir@)xt — fY(0)n*
of judge 7 nor 5 will depend on the offender’s gender even though each judge

. It follows that neither the decision rule




employs a different decision rule from the other. If we assume that the distri-
butions of 6 are equalized once we condition on the observed elements of the
case, then the model predicts that any given judge must incarcerate men and
women at the same rate such that each dot in Figure 7 in the paper aligns
perfectly along the 45° in the absence of discrimination. Systematic devia-
tions from the 45° will be a tip-off that judges engage in either statistical or
taste-based discrimination.

As noted in the paper, the line of best fit deviates from the 45° line with a
flatter rather than steeper slope. We suggested that one possible explanation
is that the distribution of case facts may differ with respect to gender even
after conditioning on observable characteristics. To illustrate this point more
formally, we present Figure A3 which highlights the expected changes in in-
carceration rates by gender as we move from a less to a more punitive judge.
The plot shows blue and orange lines which reflect the hypothetical distribu-
tions of 6 for women and men, respectively. The distributions are drawn such
that women are more likely to be associated with lower values of 6, which is
consistent with our descriptive evidence that shows women commit less severe
crimes, on average. Judge j' is more punitive relative to judge j since 0% < 65
Importantly, the area shaded under the blue and orange curves between 67,
and 67 represent the difference in the women’s and men’s incarceration rate be-
tween the two judges, respectively. In this case, a comparison of the two judges
shows that the increase in the judicial incarceration rate of women is smaller
than the increase in the judicial incarceration rate of men because more puni-
tive judges have a higher willingness to incarcerate less severe offenses which
are disproportionately represented by women. Thus, in this framework, the
fact that in Figure 7 in the paper the line of best fit is flatter than the 45° is
not necessarily unexpected.

1.3 Robustness of Rank-Order Test to Spillover Effects

The rank-test is robust to herding and/or spillovers across judges. We
will illustrate this point is in the context of our conceptual framework. Panel
(a) of Figure A4 shows a baseline scenario in which judges have incentive to
set gender-specific decision rules because for a given 6, the relative likelihood
of being a High risk type is higher for men than for women (e.g. judges
statistically discriminate against men). However, neither judge has tastes for
discrimination since the incarceration costs are the same across gender for any
given judge. The optimal decision rule dictates that a judge will sentence
an offender to prison if 8 exceeds the judicial threshold HJg-* and to probation
otherwise. It follows that in the absence of tastes for discrimination, the



Figure A3: Understanding the Slope Less Than 1
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Notes: The blue and orange lines represent the distribution of 8 for women and men, respec-
tively. The figure shows that as we move from judge j to j’, there is a larger increase in the
incarceration rate for women than for men since more punitive judges have a higher willing-
ness to sentence offenders to prison for less severe crimes and women are overrepresented in
these crime types.

ranking of judicial incarceration rates will be the same for both female and
male offenders. This is the key idea underlying the rank-order test.

Consider a thought experiment in which the entry of a harsh judge repre-
sents a shock that plausibly affects the sentencing preferences of others. To
what extent do these spillover effects unwind the rank-order test? Suppose
the entry of a harsh judge (whose cost function is not shown) has the effect
of shifting the cost function of judge j" up or down. Panel (b) of Figure A4
illustrates upward shifts in the incarceration costs of judge j’ from c; to ¢
and then from ¢; to ¢;. Each dot is located at an intersection that determines
the judge’s threshold rule, Qf*. For example, the x-coordinates of Points A and
B reflect the decision thresholds for judge j" used to sentence men and women,
JH @) d fi @)rH
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represent the decision thresholds applied towards male and female offenders,
respectively. Note that the increases in the incarceration costs of judge j’ are
associated with right shifts in her decision thresholds. This can be interpreted
as judge j’ becoming more lenient in response to the entry of a harsh judge.

The key feature of this plot is that at each location of ¢;, the ordering
of the judicial thresholds remains independent of the offender’s gender. At
baseline, the judicial thresholds are ordered such that A < G and B < H.
Given the judge’s decision rule, this implies that judge j’ will incarcerate men
and women at higher rates in comparison with judge j. The same is true at

respectively. In general, the dots that lie along the lines



Figure A4: Robustness to Spillovers

Panel (a): Ordering of Judicial Thresholds at Baseline
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Notes: IB and IC stand for incremental benefit and cost of incarceration, respectively. This
graph shows shifts in the incarceration costs of judge j’ presumably due to the entry of a
harsh judge. In this example, judge j becomes more lenient but the results do not hinge
on this assumption. The x-coordinate of each dot represents the judge’s decision threshold,
9?*. Thus, as judge j° becomes more lenient, her decision thresholds shift to the right.

¢y. At ¢y, judge j' is now less punitive than judge j since ¢; > ¢;. The



decision thresholds are ordered such that G < E and H < F which implies
that judge 7" will now incarcerate men and women at lower rather than higher
rates than judge j. While the ordering of the judicial incarceration rates has
switched, the crucial feature is that the ordering remains independent of the
offender’s gender. Even in the presence of spillover effects, the ordering of
judicial incarceration rates will not depend on the offender’s gender in the
absence of tastes for discrimination. The robustness of the rank-order test
highlights an advantage of an empirical test based on judicial incarceration
ranks not rates.

2 Statistical Procedure

To implement the rank-order test, we adapt the procedure developed in
Park (2015) to apply to the study of gender discrimination. The rank-order
test requires non-standard statistical techniques. This is because the null
hypothesis of no tastes for discrimination involves the following set of kk=1)

2
inequality constraints:

Hy: (v =) =) =05 #54 (1)

where k denotes the number of judges and %M and 7}” represent the male
and female incarceration rates for judge j, respectively. This null hypothe-
sis highlights the intuition that in the absence of taste-based discrimination,
judges should exhibit consistency in sentencing; that is, judge j should incar-
cerate both men and women at either higher or lower rates in comparison with
judge j'. More extreme violations of these constraints will constitute stronger
evidence of tastes for discrimination.

The presence of inequality constraints in the null raises a concern. Because
the null hypothesis specifies the ordering rather than the level of judicial incar-
ceration rates, multiple parameter values can satisfy the inequality constraints
under the null. In consequence, the asymptotic null distribution of our test
statistic as well as the (1 — a)) quantile that serves as the critical value can
vary depending on the location of the null. A burgeoning econometrics litera-
ture on statistical inference in partially identified models offers well-developed
techniques that allow the researcher to select critical values in ways that in-
crease statistical power while still controlling asymptotic size (Bugni (2010),
Andrews and Soares (2010), Bugni et al. (2015), and Canay (2010)). While
a formal and detailed treatment is beyond the scope of this paper, we would
like to provide a simple example in R? in order to illustrate key concepts.



Consider a data generating process Y ~ N(v, 1) and suppose that we are
interested in conducting the following statistical test:

Hy:y1 >0,9% > vs. Hy:(y1,7) € R? (2)

Figure A5 will help visualize the complication that can arise in statistical
tests with inequality constraints. The grey shaded area represents the cone, C,
which contains all the parameter values that satisfy the inequality constraints
imposed under the null. The red line denotes the set of points y that are all
some distance [ away from the cone and the dashed black lines are the contour
lines associated with each data process. Point A represents the location of a
data process at which only one constraint binds (e.g. 73 = 0 but v > )
whereas at Point B both constraints bind (e.g. 73 = 0 and 7, = 7). While
Points A and B both represent locations that are consistent with the null
hypothesis, notice that the tail probabilities (e.g. the area of the circles that lie
beyond the red line) associated with these two null distributions are noticeably
different.® In particular, the (1—«) quantile of the null distribution centered at
B is larger than its counterpart at A. In general, it is true that the critical values
are larger at points in the parameter space where more inequality constraints
bind.

The crucial point made in the literature is as follows: If the researcher knew
which constraints were actually binding, then she could potentially leverage
a more powerful statistical test by conducting inference under a re-centered
null distribution where fewer inequality constraints bind. Recent literature has
made considerable progress on developing “pre-test” procedures that estimate
slackness parameters in order to determine which inequality constraints bind
(Andrews and Soares (2010), Andrews and Barwick (2012)). These procedures
take care to ensure that the likelihood of erroneously concluding that a con-
straint is slack is asymptotically negligible. The researcher can then re-center
the null distribution to a location consistent with the results of the pre-test,
simulate the empirical distribution of the test statistic via re-sampling tech-
niques, and finally compute the (1 — a)) quantile of the simulated distribution
to serve as the critical value for the test. Our revised statistical test now incor-
porates these elements because the literature shows compelling evidence that
these techniques can substantially increase power without inflating asymptotic

3In particular, under the distribution centered at B, there is a much higher likelihood
of observing data beyond the red line in comparison with the null distribution centered at
A. If we take the critical value to the be the (1 — ) quantile of the null distribution, then
the critical value that we would use under the null distribution centered at B will be larger
in comparison with the one associated with the null distribution centered at A.
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Figure A5: Potential Conservatism in Tests with Inequality Constraints

Notes: The constraints imposed are «y; > 0 and 9 > 1. The cone, C, shows all values in the
parameter space that satisfy the inequality constraints. The plot shows two distributions of
Y that are both consistent with the null hypothesis. The one centered at (0, 0) is the least
favorable null. The red line shows the set of points that are all the some specified distance
from the cone. The dashed circles represent contour lines of the null distributions.
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size. We will detail this procedure next.

The Statistical Procedure
1. We run the following unrestricted regression model:

Yej = BO + ﬁlXc + ,ng + €cj (3)

where ¢ and j denote the case and the judge, respectively. The X, term
is a vector of case characteristics including race, a set of age indicators,
total counts, whether the offense is a person crime, a drug crime, vio-
lates a special rule, whether the defendant hired private counsel, plea
status, the state’s presumptive sentence length, presumptive sentence
length-by-drug crime interaction, and a set of year fixed effects. These
covariates adjust for potential imbalance in case characteristics across
judges along observable dimensions.* The 'yf parameters represent a set
of indicator variables for each judge-by-offender gender cell. The sum of
square residuals from the unrestricted model is denoted as €’¢.

2. We run a version of the regression model in (3) that imposes the following
set of @ inequality constraints:

(= = =0V £ (4)

The sum of square residuals from this restricted model is denoted as
*/ _k

e”’¢*. We can then construct a F-statistic using the unrestricted and
restricted sum of squared residuals

po (e =20 /g
#é/tn =)

where ¢ is the number of constraints imposed in the model, and p denotes
the number of parameters estimated in the regression. Note that the
constrained optimization problem can be solved using fmincon, CVX, or
Knitro packages in Matlab.

3. Before we simulate the distribution of the F-statistic, we will conduct a
series of GMS pre-tests in order to determine which of the k(kT_l) inequal-

ity constraints bind. In particular, we estimate the degree of slackness

4Even though cases are randomly assigned, there is still a benefit to conditioning on
various case facts since the judicial incarceration rates will be estimated with more precision.
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in the g-th constraint with the following statistic:

_ 1Y =m"MEM =M
my = . 3

where k,, is a o(n%) sequence of positive numbers, 7, is the bootstrapped
standard error of (7;"" — ;") (7™ — 4;™), and 47 is the unrestricted
estimate of judge j’s incarceration rate towards gender g felons. We
compare this test statistic to 1 to determine whether the constraint binds
or not.’

4. If we find that m, < 1, then we conclude the constraint is binding,
whereas my, > 1 implies that the constraint is non-binding. Note that
this pre-test procedure yields a different set of constraints in comparison
with those in (4). We now re-run the regression model (3) but impose
the inequality constraints implied by the GMS pre-test procedure. We
will denote the estimates of 5y, 51, and the judicial incarceration rates
from this restricted regression as 33*, 57, and 'yj-’**. In addition, we will
refer to the residuals from this restricted regression as €**.

5. Re-sample the residuals ¢** with replacement. Construct a new outcome
variable, 3, by plugging in G5*, 5*, 77", and ¢ into equation (3).
Note that this is analogous to re-sampling from re-centered data in a
non-regression framework. For each re-sample, re-run steps 1 and 2 in
order to obtain a simulated F-statistic.5 Conducting this step a large
number of times will generate an empirical distribution of the F-statistic
from which we can compute the (1 — /) quantile to serve as the critical
value for our statistical test. We can then compare the observed F-
statistic to our critical value to ascertain whether rejection of the null is

warranted or not.”

5The k,, term is referred to as a tuning parameter in the literature. In our analysis,
we take ki, = (Inn)2. Andrews and Barwick (2012) recommends using a refined moment
selection procedure that computes a finite data-dependent tuning parameter. However, com-
putation of the tuning parameters can be intensive for models with more than 10 inequality
constraints. Because the analysis includes statistical tests with more than 10 constraints,
we do not use this approach.

5The number of bootstrapped samples that we use is 1,000.

"It is worth emphasizing that the main interest of this empirical exercise is not the
estimates of judicial incarceration rates per se, but what the estimates reveal about the
underlying incentives that affect judicial sentencing. If we reject the null hypothesis, then
this implies that judges engage in taste-based discrimination. In that sense, the spirit of
our statistical test is more akin to a specification test of an economic model defined by
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3 Additional Empirical Results

3.1 DiNardo, Fortin, and Lemieux (1996)
(DFL) Derivation

Because many of the results in the paper rely on semi-parametric re-
weighting techniques as in DiNardo et al. (1996), we present a brief overview
of the methodology here. Consider an observation in our dataset represented
by the vector (s,x,g), where s is the sentencing outcome, x is a vector of case
characteristics, g is a gender indicator that is 1 if the felon is female and 0
otherwise. The observed joint distribution of the data is given by f(s,z,g).
The sentence length distribution conditional on gender can be obtained by
integrating the product of the conditional distribution and the gender-specific
covariate distribution over the support of x, 2.

f@@%z[;ﬂﬂamf@wﬂx

We are interested in estimating counterfactual sentencing distributions; for
example, the sentencing distribution that would have arisen for males if males
had the same characteristics as females, f(si|x,g = 0), where s; denotes the
potential sentence length that a male offender would receive if the offender
was female. While this counterfactual distribution is unobserved, it can be
estimated by constructing a re-weighting function:

f(s1lg=0) = g f(s|r,9=0)f(z|g = 1)dx

:1;ﬂﬂag=mwuvum=owx

where ¢(z) = ;gzigzég Applying Bayes Rule, we can re-write the weighting

" f=1l) £(g=0)
f(g=0lz) f(g=1)"
re-weighting the covariate distribution for males by v (z). If x is discrete, then

the weighting function can be computed non-parametrically by estimating the
relatively likelihood of the observation corresponding to a woman in each cell.
Otherwise the weighting function can be estimated using a logit or probit. In
our analysis, we run a probit model to predict the probability of the offender’s
gender conditional on observable characteristics. Case characteristics include

function as () The counterfactual density is obtained by

inequality constraints.
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indicators for whether the defendant is represented by private counsel, plea
status, person crime, total counts, whether felon violates a special rule, and
indicators for black and Hispanic. We control for age by including indicators
for 4 separate age groups, < 25,25 — 34, 35 — 44, 45+. We also include a set of
criminal severity and criminal history fixed effects and in some specifications
include severity-by-age and criminal history-by-age interactions.

3.2 Females Re-weighted

Here, we present results from the semi-parametric decomposition when we
re-weight females to have the same covariate distribution as males. Panel B
shows these results. Panel A are the results in the paper that re-weight males to
have the same distribution as females and is reproduced here for convenience.
There is still a 2.5 percentage point gender gap in incarceration when we
control for the full set of covariates, which translates to a 12% unexplained
difference in the gender disparity. The sentence length gap falls close to zero
and is not statistically significant. That the incarceration gap is smaller when
we re-weight females to look like males is not surprising. This exercise will put
more weight on females who share similar characteristics as male offenders.
Male offenders are more likely to commit more severe crimes and have more
extensive criminal histories than females. It seems reasonable that judges are
less lenient towards women who commit worse crimes. In the main part of
the paper, we focus on the results that re-weight males to look like females
because the data is concentrated in the low-severity and low-criminal-history
portion of the sentencing grid, thus the exercise has more statistical support.

3.3 Gender Difference in Judicial Case Composition

In this section, we examine the possibility that judicial heterogeneity could,
in theory, be driven by gendered differences in case composition across judges
rather than judicial differences in sentencing preferences. We use the afore-
mentioned re-weighting techniques as in DiNardo et al. (1996) to address this
concern. Specifically, we construct a weighting function that takes the form
];((jj—.("f))%, where x represents a vector of case facts, jg is the baseline judge,
and we estimate P(j|z) via a probit model. Importantly, we include interac-
tions between case facts and gender in x in order to equalize gender differences
in case facts across judges. In turn, the judge effects estimated from the re-
weighted model will represent heterogeneity in judicial sentencing preferences
that accounts for potential gendered differences in case composition across

judges.
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Table Al: Semi-Parametric Decomposition of Gender Sentencing Disparities

Panel A: Males Re-weighted to Have Female Covariate Distribution

Female-Male Gap in:

Incarceration -0.198 -0.211 -0.163 -0.058 -0.057 -0.055
(0.004) (0.004) (0.004) (0.003) (0.003) (0.003)
Log(Prison Months) -0.442 -0.437 -0.175 -0.042 -0.031 -0.033
(0.025) (0.025) (0.023) (0.022) (0.022) (0.022)
Panel B: Females Re-weighted to Have Male Covariate Distribution
(a) (b) (c) (d) (e)
(a) + b) + (c) + Age (d) + Case
Female-Male Gap in: Actual Age . Criminal &
Severity His Intx Facts
1story
Incarceration -0.198 -0.203 -0.147 -0.006 -0.028 -0.025
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
Log(Prison Months) -0.442 -0.409 -0.156 0.031 0.008 -0.006
(0.025) (0.025) (0.025) (0.024) (0.025) (0.024)
Notes: These results use non-drug felony offenses only. We use probit models to predict gender probability conditional

on observables. Case facts include indicators for whether the defendant is represented by private counsel, plea status,
person crime, number of counts, whether felon violates a special rule, and indicators for black and Hispanic. We control
for age by including indicators for 4 separate age groups, < 25,25 — 34,35 — 44, 45+.

Table A2: Judicial Heterogeneity Adjusted for Gender-by-Fact Differences

Dep Var: Incarceration

Re-weighted Results:

(1) 2) ®3) (4)
Unadjusted Case Facts (2) + Dems (3) + Facts
Measures of Dispersion: Male Female Male Female Male Female Male Female
Standard Deviation 0.070  0.062 0.061 0.071 0.066 0.076 0.070 0.076

75/25th Percentile Difference 0.098  0.087 0.076 0.085 0.071 0.092 0.082 0.098
90/10th Percentile Difference 0.174  0.141  0.140 0.152 0.149 0.166 0.156  0.171

Note: In columns 2, 3, and 4, cases are re-weighted such that the gender difference in case composition is equalized
across judges. In column 2, the case facts include presumptive sentence length, special rule violations, and person
crimes. In column 3, we add demographic variables including age and race. In column 4, we add private counsel,
total counts, and plea status.

Table A2 shows measures of dispersion that place more weight on judges

whose judge effects are estimated more precisely. We present the standard
deviation, 75/25th percentile difference, and the 90/10 percentile difference
across different models and separately for men and women. The first column

shows the measures of dispersion that do not adjust for case facts.

These

results show that there is considerable heterogeneity across judges in the raw
data. A 1 standard deviation increase in judicial assignment is associated with
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a 7.0 and 6.2 percentage point increase in the likelihood of incarceration for
men and women, respectively. Given that the male and female incarceration
rates are 0.319 and 0.121, respectively, this constitutes roughly a 22% and 51%
change for men and women, respectively.

Column 2 shows measures of dispersion when we re-weight caseloads to
account for gender differences in presumptive sentence length, special rule
violations, and person vs. non-person offense. While some of the measures of
dispersion are slightly more moderate (e.g. the 75/25 percentile difference for
men falls roughly 22% from 0.098 to 0.076), their magnitudes still imply that
judicial preference has substantial impact on the likelihood of incarceration.
For example, movement from the 25th to 75th percentile judge is associated
with a 24% increase the likelihood of incarceration for men. For women, two
of three measures of dispersion (the sd and 90/10 difference) actually increase
slightly. When we add demographics (age and race, column 3) and additional
case facts (private counsel, total counts, and plea status, column 4) to the
set of covariates in columns 3 and 4, respectively, the results are qualitatively
similar.

We should note that the stability across these different models is not nec-
essarily surprising. We have had numerous phone conversations with county
clerks and judges in which we were reassured that cases are randomly assigned
to judges. Indeed, in the next section, we will show that presumptive sentence
length, a parsimonious proxy of case type, is balanced across judges which is
consistent with random assignment. Given that cases are randomly assigned,
it would be peculiar if case composition was balanced, on average, but sys-
tematically differed along gender lines. In summary, these results confirm that
the observed judicial heterogeneity is robust to differences in gender-by-fact
composition which is expected in light of how cases are assigned in Kansas.

3.4 Balancing Table

Table A3 shows results from balancing tests that assess whether cases are
randomly assigned to judges. We regress the presumptive sentence length on
judge fixed effects separately for each district and then test whether the judge
fixed effects are jointly equal to zero. The first two columns uses all non-drug
cases and shows the F-statistics and p-values associated with the tests. In
the next two columns, we run similar tests but restrict the sample to first-
time offenders. If cases are selectively assigned to judges, then there may be
differentially stronger evidence of random assignment of cases involving first-
time offenses to the extent that judges and prosecutors have less information on
first-time offenders. However, the results are similar to those that use the full
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sample of non-drug crimes. Finally, we also test whether there is any evidence
of gender-based case assignment by including gender-by-judge interactions to
the regressions. This will tell us if some judges are assigned cases with worse
female offenders than others. The interactions are jointly significant in only 1
judicial district. It is worth noting that the latter is the balancing test that
needs to be satisfied in order to validate the rank-order test.

Table A3: F-statistic associated with Joint Test of Judge Fixed Effects

Dep Var: Presumptive Sentence Length

Full Sample First-Time Offenders Judge-by-Gender Intx
District F-Statistic P-value F-Statistic P-value F-Statistic P-value

1 8.365 0.000 2.500 0.083 0.556 0.574
2 1.841 0.138 2.738 0.043 0.015 0.997
3 1.960 0.020 2.359 0.004 0.477 0.938
4 1.903 0.149 4.287 0.014 0.290 0.748
5 4.159 0.006 0.655 0.580 0.499 0.683
6 1.957 0.119 0.344 0.794 0.063 0.979
7 0.206 0.893 1.485 0.218 0.134 0.940
8 3.275 0.006 0.553 0.736 0.436 0.823
9 0.722 0.539 0.515 0.672 0.763 0.515
10 3.648 0.000 2.226 0.014 0.603 0.813
11 2.030 0.072 2.457 0.033 0.765 0.575
12 0.314 0.575 0.220 0.640 0.116 0.734
13 0.462 0.764 1.596 0.174 0.566 0.687
14 1.262 0.278 0.210 0.958 0.163 0.976
15 1.726 0.190 0.517 0.474 2.167 0.142
16 1.778 0.149 1.390 0.246 0.742 0.527
17 . . . . . .

18 5.673 0.000 1.958 0.002 0.664 0.914
19 1.937 0.145 1.796 0.170 0.320 0.727
20 2.055 0.104 2.341 0.073 0.426 0.734
21 0.589 0.555 0.351 0.704 0.010 0.990
22 2.688 0.102 0.077 0.782 0.113 0.736
23 1.456 0.234 2.441 0.089 0.443 0.642
24 3.755 0.053 0.729 0.395 1.091 0.297
25 2.412 0.065 1.507 0.212 0.268 0.849
26 2.741 0.027 1.806 0.127 2.323 0.055
27 15.601 0.000 2.555 0.038 2.818 0.024
28 1.501 0.186 0.890 0.487 0.401 0.848
29 9.608 0.000 2.836 0.000 0.883 0.577
30 1.221 0.295 3.974 0.020 0.789 0.455
31 0.966 0.425 0.998 0.408 0.257 0.906

# of Districts (p-value < 0.05) 9 9 1

Notes: These results use non-drug felony offenses only. We run regressions of presumptive sentence length on judge
fixed effects separately by district. We test whether the judge fixed effects are jointly equal to zero. F-statistics and
associated p-values are reported. The second column restricts the sample to first time felons and in last column, we
include judge-by-gender interactions are report F-statistics and p-values associated with the test that the interactions
are jointly equal to zero.

We also present graphical evidence that cases are not assigned to judges
by gender. Figure A6 plots the relationship between the judge-specific female-
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male incarceration gap and the judge-specific female-male severity, criminal
history, special rule, or person crime gap in the cases appearing before each
judge.

Figure A6: Judge-Specific FM Disparity in Incarceration and Case Facts
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Notes: Each dot represents judge-specific gender disparity relative to the baseline judge,
who is normalized to 0. The horizontal and vertical lines pass through the baseline judge.
The estimates are regression-adjusted for the usual set of covariates. There are 173 judges
total. Judges with less than 100 cases are excluded. The sample is restricted to non-drug
related crimes.

While there is evidence of heterogeneity in the female-male incarceration
gap, there is little evidence this is driven by female-male differences in case
assignment. Consider the figure in the upper left. If it were the case that
judges who punish women more harshly (and thus the female-male gap is more
positive) happen to be assigned worse female offenders (with worse severity
measures), then we would expect an upward slope to these figures. Instead,
all of the estimated relationships are flat and none are statistically significant
from zero at the 5% level. This corroborates that the heterogeneity in judicial
treatment towards females is unlikely to be driven by gender differences in the
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distributions of severity, criminal history, special rules violations, and person
crimes across judges.

3.5 Judicial Entry and Changes in Case Composition

In this section, we examine the possibility that our event-study analysis
may reflect changes in case composition due to the entry of a harsh or lenient
judge. There are numerous reasons why the entry of a harsh or lenient judge
could lead to changes in case composition. For example, the presence of a harsh
judge may lead prosecutors to file charges for marginal cases, deter criminals
from re-offending upon release, or encourage police to pursue certain arrests
more aggressively when the expected punishment is higher. These types of
behavioral responses could lead to changes in the severity of the crimes, the
criminal history of the offenders, and the types of charges or special rules
violations that are applied, which in turn could affect sentencing.

However, it is less clear as to how these hypothetical changes should affect
the interpretation of our results. If the changes in case composition are a
direct response to the entry of the harsh or lenient judge, then the increase in
incarceration rates are ultimately driven by changes in judicial composition.
In this case, the change in case composition would point to a mechanism
rather than a confound for our analysis. Nonetheless, our view is it would
be a worthwhile exercise to examine the degree to which case facts change
with respect to judicial composition. To this end, we will provide a new set of
results from the following regression model:

Yiat = V¢ + Ta + 0Postig + X3 + €iar (5)

where ;4 is the outcome variable, 7, and 7; are a set of year and district
fixed effects, respectively, X is the usual set of case facts, and Post;y is a
binary variable that indicates whether the case is sentenced before or after the
entry or exit of a lenient or harsh judge. Harsh and lenient judges are defined
in terms of their incarceration rate of men who commit non-person offenses.
This regression is restricted to women only. The subscripts ¢ denote the case,
d denotes the district, and ¢ reflects the year. Districts that do not experience
an event of entry or exit will identify the year fixed effects. Standard errors
are clustered at the district-level.

There are two important differences between this regression model and
the event-study model employed in the paper. First, the outcome variable
is no longer incarceration. Instead, our primary specification of interest will
use a measure of predicted incarceration (z@“) as the outcome variable.
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Predicted incarceration represents the fitted values from a regression of in-
carceration on the usual set of case facts, the criminal severity level, criminal
history level, race, age, plea status, private counsel, and total counts. We will
then regress incar on Post;q and v, and 74. In addition, we will show results
from models that separately examine how various case facts change pre vs.
post entry or exit of a harsh or lenient judge. These results will provide more
context for the observed changes in incar.

Second, notice that the key independent variable is now Post;y which
collapses the set of timing indicators into a single variable. While this specifi-
cation is less flexible in that it does not allow us to observe the time pattern in
case facts, it is a much more parsimonious way of presenting the results which
we prefer due to the large number of case facts that we examine.

Table A4: Case Mix and Composition of Judiciary

Coefficient on Post Entry or Exit

“Harsh” Judge “Lenient” Judge

Qutcome Variables: Entry Exit Entry Exit
Incarceration 0.074%** 0.014 -0.058***  _0.020
(0.010)  (0.014) (0.013)  (0.013)

Predicted Incarceration -0.043***  -0.039%** 0.018 0.014*
(0.009)  (0.013) (0.012)  (0.007)

Case Facts:

Log(Presumptive Sentence Length) — -0.179%*** 0.040 -0.009 0.004
(0.026)  (0.059) (0.027)  (0.024)

Severity -0.366%** 0.112 -0.030 0.015
(0.050)  (0.078) (0.058)  (0.050)

Criminal History -0.064 -0.306 0.188%** 0.089
(0.075)  (0.272) (0.075)  (0.089)
Special Rule Violation 0.023 -0.101* 0.058%*  0.046**
(0.014)  (0.052) (0.026)  (0.020)
Person Crime 0.021* 0.027* -0.022*  -0.015*
(0.012)  (0.014) (0.012)  (0.008)

Log(Total Counts) 0.083***  -0.044 -0.020 -0.016
(0.015)  (0.039) (0.022)  (0.015)

Private Counsel 0.049** 0.015 -0.006 0.015
(0.020)  (0.107) (0.017)  (0.045)

Plea -0.032*** -0.002 0.007 0.005
(0.004)  (0.013) (0.008)  (0.008)

Notes: Predicted incarceration represents the fitted values from a regression of incarceration on the
usual set of case facts, the criminal severity level, criminal history level, race, age, plea status, private
counsel, and total counts.
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Table A4 shows the results. The first row shows results that are qualita-
tively similar to those in the previous version of the paper. The incarceration
rate of women increases (decreases) when a harsh (lenient) judge enters, but
there is relatively little impact when a harsh or lenient judge exits. The key
set of results are in the second row. In column 1, the estimate implies that
the entry of a harsh judge is associated with a subsequent decrease in pre-
dicted incarceration. This suggests that the 7.4 percentage point increase in
female incarceration coincides with a time period when women are relatively
less felonious. The analysis of case facts shows that the decrease in predicted
incarceration is driven by less severe offenses and an increase in private coun-
sel. Similarly, in column 3, there is little evidence that the 5.8 percentage point
decrease in female incarceration is driven by case facts. In fact, the coefficient
on predicted incarceration is positive but not statistically significant. While
it is possible that case mix could, in theory, respond to judicial composition,
this analysis does not lend strong support to this hypothesis.

3.6 Judicial Heterogeneity in Sentencing Preferences

Our prior is that judges who are “tough on females” might also be “tough
on crime” in general. To assess this, Figure A7 presents a series of plots that
show the correlation between the judge-specific female incarceration rate and
other judge-specific incarceration rate. Moving left-to-right, the other judge-
specific incarceration rates in the top row include male incarceration rates
and male incarceration rates among non-person crimes, and in the bottom
row, male incarceration rates among below-median severity crimes, and male
incarceration rates among below-median criminal history offenders. These
“other” judicial incarceration rates focus on male offenders to avoid conflating
severity effects or criminal history effects with gender. Recall that these lower
severity crimes and criminal histories are consistent with the records of female
offenders. Each panel shows how one of the other judicial incarceration rates
correlates with judicial female incarceration rates. All of the incarceration
rates are regression adjusted for the usual set of covariates.

All four panels of Figure A7 exhibit a strong positive correlation. Judges
who incarcerate female offenders at high rates also tend to have high incarcera-
tion rates of males, and of males who have sparse criminal histories, males who
commit non-violent and less severe crimes. Bivariate regressions confirm that
the estimated relationships are highly statistically significant at conventional
levels. The figure also reinforces that there is considerable judicial hetero-
geneity in both male and female incarceration rates, as there is comparable
variation along both the vertical and horizontal axis.
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Figure A7: Judicial Heterogeneity by Gender and Type of Crime
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Notes: Each dot represents judge-specific incarceration rates relative to the baseline judge,
who is normalized to 0. The horizontal and vertical lines pass through the baseline judge.
The incarceration rates are regression-adjusted for the usual set of covariates. There are
173 judges total. Judges with less than 100 cases are excluded. The sample is restricted to
non-drug-related crimes.

3.7 Prison Diversion

It is worth noting that Kansas did implement a prison diversion program
for drug offenders during our sampling period. Our sense is that the prison
diversion program will not affect our main results. This is because most of our
empirical work - quantifying judicial heterogeneity, the event-study analysis,
and the rank-order test - focuses exclusively on non-drug related offenses. In
Kansas, the overwhelming majority of cases that are eligible for the prison
diversion program (e.g. close to 99%) are drug-related offenses. Thus, our
main analysis does not use cases directly affected by this program. However,
it is possible that our analysis is affected to the extent that case assignment to
judges responded to the program. Through conversations with district court
clerks and judges, we have learned that the introduction of the prison diversion
program did not have an impact on how cases were assigned to judges. Once
a case enters the system, it is assigned to a judge via a computer algorithm
regardless of whether or not it is a non-drug or drug related offense. This is
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consistent with our finding that the presumptive sentence length is balanced
across judges in the majority of judicial districts in Kansas.

Table Ab: Gender Disparity Excluding Drug Court Cases

Restricted to Drug Related Offenses

Female-Male Gap in: (1) (2) (3) (4)
Incarceration Rates — -0.152*%** -0.161*%** -0.066*** -0.070***
(0.007)  (0.008)  (0.008)  (0.008)

Log(Prison Length) — -0.129%* -0.173*** -0.089*** -(.082%**
(0.030)  (0.029)  (0.023)  (0.022)

Covariates:

Race

Age

Severity Level
Criminal History
Case Facts

Z22222
222 <
2
e

Note: There are 29,698 drug-related cases in which the offender was not sen-
tenced to a prison diversion programs. Of these, 7,896 cases resulted in a prison
term.

Nonetheless, it seems prudent to explore the degree to which the prison
diversion program may have affected our results. The analysis that is most
likely to be influenced by the program is our estimation of the gender sen-
tencing disparity in drug related cases. Recall that this is the only part of
empirical work that focuses on drug-related offenses and it is true that women
are more likely to be assigned to a prison diversion program conditional on
the usual set of case facts. Table A5 shows the estimated gender disparity in
incarceration and log of the prison term among drug-related cases, but unlike
the previous draft of the paper, these models restrict the sample to cases in
which the offender is not sentenced to the prison diversion program. The four
columns show estimates from specifications that vary what case facts are in
the conditioning set. The results show striking similarity to those in Table 4
of the paper. These estimates reinforce the notion that our empirical analysis
is unlikely to be biased by the introduction of the prison diversion program.
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