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A. Introduction

In this appendix we provide a complete analysis of the mechanism-design problem

described in the main body of the paper.

B. Preliminaries

B.1. Functions of Bounded Variation. We begin by discussing the concept

of bounded variation. This concept will be used to formulate our assumptions on

the distribution function F in the subsection immediately following this one, namely

Section B.2. More importantly, it plays an essential role in our proof of sufficiency in

a much later section, namely Section P.

The simplest definition of a function of bounded variation is probably that given

in the main text: a function f : (0,∞) → R is of bounded variation iff it is the

difference of two bounded and non-decreasing functions f+, f− : (0,∞) → R. This
definition forms the starting point for the definition that we shall use. However, it

needs to be developed into a form that is more convenient for the Lagrangean analysis

below.

The first step is to collect the functions of bounded variation into equivalence

classes. Intuitively speaking, two functions of bounded variation are equivalent iff

they differ only at their points of discontinuity. This step is analogous to the first

step in defining spaces of Lebesgue integrable functions. (In that case, one collects

the Lebesgue integrable functions into equivalence classes. Two Lebesgue integrable

functions are equivalent if they differ only on a set of measure 0.)

1



Online Appendices for “Self Control and Commitment:
Can Decreasing the Liquidity of a Savings Account Increase Deposits?”

The second step is to place a norm on the resulting equivalence classes in such a

way that the limit of a sequence of equivalence classes is again a suitable equivalence

classes. (This step is analogous to the second step in defining spaces of Lebesgue

integrable functions.) The main idea here is to note that, since f+ and f− are non-

decreasing, they are effectively the distribution functions of a pair of non-negative

bounded measures df+ and df−. Of course, neither df+ nor df− is unique. But their

difference df = df+ − df− is. The main component of the norm is therefore the total

variation kdfkTV of df . The other idea is to note that, while kdfkTV effectively controls
the derivative of f , it does not control the level of f . The remaining component of

the norm can therefore be taken to be |fR(1)|, where fR(1) is the limit of f from the
right at 1.

The best way of understanding how these ideas work is to note that we can easily

reconstruct f from df and fR(1). For all θ ∈ (0, 1), we have

fR(θ) = fR(1)− df((θ, 1])

and

fL(θ) = fR(1)− df([θ, 1]) ,

where fR(θ) and fL(θ) are the limits of f from the right and left at θ. And for all

θ ∈ (1,∞), we have
fR(θ) = fR(1) + df((1, θ])

and

fL(θ) = fR(1) + df((1, θ)) .

We also need to work with the space BV(Θ,R) of functions of bounded variation
on Θ =

£
θ, θ

¤
. By analogy with our discussion of the space BV((0,∞),R), it should

be clear that we can endow BV(Θ,R) with the norm

kfkBV = |fR(θ0)|+ kdfkTV ,

where θ0 is a fixed element of
¡
θ, θ

¢
and df is a bounded measure on Θ. There is,

however, one surprise: a function f ∈ BV(Θ,R) has a limit on the left at θ and a
limit on the right at θ. Indeed, we have

fL( θ ) = fR(θ0)− df([ θ, θ0])
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and

fR( θ ) = fR(θ0) + df
¡
(θ0, θ ]

¢
.

To summarize, we denote the space of functions of bounded variation on (0,∞)
by BV((0,∞),R), and we denote the space of functions of bounded variation on
Θ =

£
θ, θ

¤
by BV(Θ,R). Unless explicitly stated to the contrary, we shall always

use the right-continuous representative of a function of bounded variation. We will

usually denote this representative simply by f , but we will occasionally denote it by

fR for emphasis. We will denote the left-continuous representative of f by fL.

B.2. Assumptions on F . We are now in a position to introduce our assumptions

on the distribution function F of the taste shock θ. They are:

A1 Both F and F 0 are functions of bounded variation on (0,∞).

A2 The support of F 0 is contained in
£
θ, θ

¤
, where 0 < θ < θ <∞.

A3 There exists θM ∈
£
θ, θ

¤
such that: (i) G0 ≥ 0 on (0, θM); and (ii) G0 ≤ 0 on

(θM ,∞).

Here G is given by the formula G(θ) = (1 − β) θ F 0(θ) + F (θ). If A1 holds then G,

like F and F 0, is a function of bounded variation on (0,∞).

B.3. The Support of F 0 is Connected. Fourth, we note that either β = 1,

in which case the analysis is trivial, or β < 1, in which case the support of F 0 is

connected.1 More precisely, we have:

Proposition 1. Suppose that β < 1 and that A1-A3 are satisfied. Then there exist

κ , κ ∈ £ θ , θ ¤ such that: (i) κ < κ; (ii) F 0 > 0 on (κ , κ ); and (iii) F 0 = 0 on

(0,∞) \ [κ , κ ].

In what follows we shall therefore take it that β < 1, and that the support of F 0

is
£
θ , θ

¤
.

1Notice that F is a distribution function, not a distribution. Also, F 0 has a dual interpretation.
It can be regarded as: either (i) the non-negative finite measure with distribution function F ; or (ii)
the density of that measure with respect to Lebesgue measure. By the same token, the support of
F 0 has a dual interpretation. It can be regarded as: either (i) the support of the non-negative finite
measure F 0; or (ii) the support of the non-negative function of bounded variation F 0. It makes no
difference which of these two interpretations is adopted.
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Proof. Note first that there exists κ1 ∈
¡
θ , θ

¢
such that F 0(κ1) > 0. Otherwise we

would have F 0 = 0 everywhere on (0,∞), by right-continuity of F 0. Next, there exists

κ2 ∈
¡
κ1, θ

¢
such that F 0 > 0 on (κ1, κ2), again by right-continuity of F 0. Third, put

κ = inf {θ | F 0(θ) > 0} and κ = sup {θ | F 0(θ) > 0}. Then certainly θ ≤ κ < κ ≤ θ.

Fourth, put α = 2−β
1−β . Then G0 ≥ 0 iff (θαF 0(θ))0 ≥ 0 and G0 ≤ 0 iff (θαF 0(θ))0 ≤ 0.

There are therefore two possibilities. If G0 ≥ 0 at θM (i.e. ∆G(θM) ≥ 0), then we
must have θαF 0(θ) > 0 for all θ ∈ (κ , θM ] (because (θαF 0(θ))0 ≥ 0 on this interval)
and θαF 0(θ) > 0 for all θ ∈ (θM , κ ) (because (θαF 0(θ))0 ≤ 0 on this interval); and if
G0 ≤ 0 at θM (i.e. ∆G(θM) ≤ 0), then we must have θαF 0(θ) > 0 for all θ ∈ (κ , θM)
and θαF 0(θ) > 0 for all θ ∈ [θM , κ ).2 Either way, we see that: (i) θαF 0(θ) > 0,

and hence F 0(θ) > 0, for all θ ∈ (κ , κ ); (ii) θM ≤ κ, for otherwise we would have

F 0 > 0 on the non-empty interval (κ, θM), and this contradicts the choice of κ; and

(iii) θM ≥ κ, for otherwise we would have F 0 > 0 on the non-empty interval (θM , κ ),

and this contradicts the choice of κ.

B.4. Constraints on the Budget Set. Fifth, recall that self 0 chooses a subset

B of the ambient action set A, and that self 1’s choice of a consumption pair from B

can therefore be described by a consumption curve (c1, c2) :
£
θ , θ

¤→ B. We consider

three possible constraints on B, namely:

Constraint 1. B is a non-empty compact subset of A.

Constraint 2. The penalty for transferring consumption from period 2 to period 1

is no greater than π.3

Constraint 3. The penalty for transferring consumption from period 1 to period 2

is no greater than π.4

Constraint 1 involves no loss of generality. Indeed, it must be possible for all

possible types θ ∈ Θ to find an optimum within B. This being the case, we can

always take the closure of B without changing the outcome, since the utility function

2If θM ≤ κ then we take the intervals (κ , θM ) and (κ , θM ] to be empty. Similarly, if θM ≥ κ,
then we take the intervals (θM , κ ) and [θM , κ ) to be empty.

3In other words, for any given (c1, c2) ∈ B and any ∆c1 ∈
h
0, 1

1+π c2

i
, self 1 can increase her own

consumption c1 by ∆c1 at a cost of at most (1 + π)∆c1 in terms of the consumption c2 of self 2.
4In other words, for any given (c1, c2) ∈ B and any ∆c2 ∈

h
0, 1

1+π c1

i
, self 1 can increase the

consumption c2 of self 2 by ∆c2 at a cost of at most (1 + π)∆c2 in terms of her own consumption
c1.
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is continuous. Finally, since A itself is compact, so too is the closure of B. Constraint

2 is an essential part of the formulation of our problem. We wish to avoid extreme

outcomes in which self 0 imposes an infinite penalty on self 1 for increasing her own

consumption at the expense of self 2. Constraint 3 is simply the mirror image of

Constraint 2. It eliminates extreme outcomes in which self 0 imposes an infinite

penalty on self 1 for increasing the consumption of self 2 at her own expense.

Remark 2. If we only impose Constraint 2, then the problem is one sided: Con-

straint 2 places a limit on the cost, in terms of c2, of increasing c1; but there is

no corresponding limit on the cost, in terms of c1, of increasing c2. By imposing

Constraint 3, we eliminate this asymmetry.

Now suppose that B must satisfy all three constraints. Then B must take one of

two forms: either

1. it consists of the single point (0, 0); or

2. its frontier consists of a curve that begins at some (0, c2) such that c2 > 0,

slopes downwards with slope between −(1 + π) and −(1 + π)−1, and ends at

some (c1, 0) such that c1 > 0.

Self 0 will never choose the first option, since the optimal pooling point on the frontier

of the ambient budget set A is preferable. (By the same token, self 0 will never choose

a B, the frontier of which is close to (0, 0).) But, if she chooses the second option,

then the resulting consumption curve (c1, c2) will be interior. That is, we will have

c1, c2 > 0 on Θ.5

The ideal approach to our problem would therefore be to impose all three con-

straints on B, and to solve the optimization problem of self 0 subject to these con-

straints. One could then verify ex post that Constraint 3 was not binding.6

In practice, we shall take a shortcut. Rather than working explicitly with Con-

straint 3, we shall instead replace it by the weaker requirement that consumption

curves are interior. Our analysis could, of course, be reworked in such a way as to

incorporate Constraint 3 explicitly. But, in practice, this would simply involve an

additional notational burden.
5This follows from our assumption that U 0t(0+) =∞.
6It turns out that the slope of the optimal budget set is at most −1. So Constraint 3 certainly

is not binding!
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Remark 3. The situation would be very different if β > 1. In that case, it would be

Constraint 2 that would not bind. We would therefore replace Constraint 2 by the

weaker requirement that consumption curves are interior.

B.5. Utility Curves. Suppose accordingly that we are given a B satisfying Con-

straints 1 and 2, and that the associated consumption curve is interior. Define a

utility curve

(u1, u2) :
£
θ , θ

¤→ (U1(0), U1(∞))× (U2(0), U2(∞))

by the formula (u1, u2)(θ) = (U1(c1(θ)), U2(c2(θ))). Then (u1, u2) must satisfy the

following conditions:

N1 C1(u1(θ)) + C2(u2(θ)) ≤ y for all θ ∈ £ θ , θ ¤.
N2 u1 is non-decreasing and u2 is non-increasing.

N3 θ du1 + β du2 = 0.

N4 β (1 + π)U 0
2(C2(u2(θ))) ≥ θ U 0

1(C1(u1(θ))).

Here: Ct = U−1t ; and du1 is a non-negative finite measure and du2 is a non-positive

finite measure.

Conversely, suppose that a utility curve (u1, u2) is interior, in the sense that it

satisfies u1 > U1(0) and u2 > U2(0) on Θ, and that it satisfies Conditions N1-N4.

Define (c1, c2) by the formula (c1, c2)(θ) =
¡
U−11 (u1(θ)), U

−1
2 (u2(θ))

¢
. Then there

exists a B with slope at least −(1 + π) such that (c1, c2) is the consumption curve

arising from B. Moreover (c1, c2) is interior.

B.6. The CRRA Case. Suppose now that U1 = U2 = U on (0,∞), and that U
has constant relative risk aversion ρ > 0. Indeed, suppose for concreteness that U is

given by the formula

U(c) =

(
c1−ρ−1
1−ρ if ρ 6= 1
log(c) if ρ = 1

)
.

Then N4 is equivalent to

N40 u2(θ) ≤ −1
ρ
a
³

θ
(1+π)β

´
+ b
³

θ
(1+π)β

´
u1(θ),
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where a and b are given by the formulae

a(z) =


z
1− 1ρ−1
1− 1

ρ

if ρ 6= 1
log(z) if ρ = 1

 (1)

and

b(z) = z1−
1
ρ . (2)

Remark 4. It is obvious that N4 becomes weaker as π increases. Since N40 is equiv-
alent to N4, N40 likewise becomes weaker as π increases.

C. The Main Problem

Our strategy will be to study a relaxed version of the problem of self 0 in which we

maximize self 0’s expected utility
R
(θ u(θ) + w(θ)) dF (θ) subject to N1, N3 and N40,

but not N2. Following Luenberger (1969, Sections 8.3 and 8.4, pp. 216-221), we shall

need:

1. A vector space7 X, which we take to be C(Θ,R)2. Here: Θ = £ θ , θ ¤ ⊂ (0,∞)
is the space of types; and C(Θ,R) is the space of continuous functions from Θ

to R.

2. A convex set8 Ω ⊂ X, which we take to consist of all

(u,w) ∈
³
BV(Θ, ran(U)) ∩ C(Θ, ran(U))

´2
such that

θ du+ β dw = 0.

Here: ran(U) is the range of U ;9 C(Θ, ran(U)) is the space of continuous func-
tions from Θ to ran(U); BV(Θ, ran(U)) is the space of all functions of bounded
variation from Θ to ran(U); and du and dw are in general elements of the space

M(Θ,R) of finite Borel measures on Θ.

7In our case X is actually a Banach space. For the Lagrangean analysis, we only need the fact
that it is a vector space. When we later use calculus to find necessary and sufficient conditions for the
maximization of the Lagrangean, we shall need the fact that it is a normed space. Cf. Luenberger
(1969, Lemma 1, p. 227).

8In our case Ω is actually a cone, the vertex of which is the constant mapping 1
ρ−1 when ρ 6= 1

and the constant mapping 0 when ρ = 1.
9I.e. ran(U) is ( 1

ρ−1 ,∞) when ρ < 1, (−∞,∞) when ρ = 1 and (−∞, 1
ρ−1 ) when and ρ > 1.
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3. A concave function10 M : Ω→ R (the objective function), which we take to be
given by the formula

M(u,w) =

Z ³
θ u(θ) + w(θ)

´
dF (θ).

4. A normed space11 Z, which we take to be C(Θ,R).

5. A closed convex cone P in Z with vertex 0 and non-empty interior, which we

take to be C(Θ, [0,∞)). With this choice of P , z1 ≥ z2 iff z1(θ) ≥ z2(θ) for all

θ ∈ Θ and z1 > z2 iff z1(θ) > z2(θ) for all θ ∈ Θ. In other words, P is the

positive cone of Z.

6. The space Z∗ of continuous linear functionals on Z. Since Z = C(Θ,R), Z∗ can
be identified withM(Θ,R).

7. The positive cone P ∗ of Z∗. Since P = C(Θ, [0,∞)), P ∗ can be identified with
M(Θ, [0,∞)) (i.e. the space of non-negative finite Borel measures on Θ).

8. Concave mappings G1, G2 : Ω→ Z (the constraint mappings),12 which we take

to be given by the formulae

(G1(u,w))(θ) = y − C(u(θ))−K(w(θ))

and

(G2(u,w))(θ) = b
³

θ
(1+π)β

´
u(θ)− 1

ρ
a
³

θ
(1+π)β

´
− w(θ),

where C = K = U−1 : ran(U)→ (0,∞), and a and b are given by the formulae
(1) and (2).

10In our case M is actually defined on the whole of X (and not just on Ω), and it is linear (and
not just concave).
11In our case, Z is actually a Banach space, and not just a normed space.
12In our case G1 is actually defined on Ξ = C(Θ, ran(U))2 (and not just on Ω). This will be useful

when we later want to do calculus. Furthermore G2 is defined on the whole of X (and not just on
Ω), and it is linear (and not just concave).
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Our problem is then to

maximize M(x)

subject to


x ∈ Ω

G1(x) ≥ 0
G2(x) ≥ 0

 .
(3)

D. Characterizing the Optimum

In our context, the Lagrangean is the mapping L : Ω × Z∗ × Z∗ → R given by the
formula

L(x, λ1, λ2) =M(x) + hG1(x), λ1i+ hG2(x), λ2i ,
where hGi(x), λii denotes the real number obtained when the linear functional λi ∈ Z∗

is evaluated at the point Gi(x) ∈ Z.

In view of our assumptions, the maximum is achieved at x0 ∈ Ω if and only if

there exist λ1, λ2 ∈ Z∗ such that:

1. L(x0, λ1, λ2) ≥ L(x, λ1, λ2) for all x ∈ Ω;

2. G1(x) ≥ 0, λ1 ≥ 0 and
hG1(x), λ1i = 0; (4)

3. G2(x) ≥ 0, λ2 ≥ 0 and
hG2(x), λ2i = 0. (5)

In other words, there exists multipliers λ1 and λ2 such that: x0 maximizes L( · , λ1, λ2)
over Ω; complementary slackness holds for the first constraint; and complementary

slackness holds for the second constraint.

Since P ∗ can be identified withM(Θ, [0,∞)), we have the following explicit rep-
resentations of M(x), hG1(x), λ1i and hG2(x), λ2i:

M(x) =

Z ³
θ u(θ) + w(θ)

´
dF (θ), (6)

hG1(x), λ1i =
Z ³

y − C(u(θ))−K(w(θ))
´
dΛ1(θ) (7)

and

hG2(x), λ2i =
Z µ

b
³

θ
(1+π)β

´
u(θ)− 1

ρ
a
³

θ
(1+π)β

´
− w(θ)

¶
dΛ2(θ), (8)
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where Λ1 and Λ2 are the distribution functions of λ1 and λ2 respectively.

Remark 5. In the interests of consistency, all integrals in this Appendix are Lebesgue-
Stieltjes integrals, i.e. integrals with respect to functions of bounded variation.

E. The Lagrangean is Fréchet Differentiable

It is immediate from the formulae (6), (7) and (8) that L(x, λ1, λ2) is in fact well

defined for all x ∈ Ξ = C(Θ, ran(U))2. Let us consider accordingly any x0 = (u0, w0) ∈
Ξ and any x1 = (u1, w1) ∈ X. Because Ξ is open, x0+ε x1 ∈ Ξ for all ε > 0 sufficiently

small. Furthermore, it can be verified that the directional derivative ∇x1L(x0, λ1, λ2)

of L at x0 in the direction x1 takes the formZ ³
θ u1 + w1

´
dF −

Z ³
C 0(u0)u1 +K 0(w0)w1

´
dΛ1 +

Z ³
b
³

θ
(1+π)β

´
u1 − w1

´
dΛ2.

(9)

This is easily seen to define a continuous linear functional

∇L(x0, λ1, λ2) : x1 7→∇x1L(x0, λ1, λ2)

onX. That is, L( · , λ1, λ2) is Gâteaux differentiable at x0 with gradient∇L(x0, λ1, λ2) ∈
X∗. Finally, ∇L( · , λ1, λ2) : Ξ→ X∗ can be shown to be continuous. It follows that

L( · , λ1, λ2) is Fréchet differentiable on Ξ.

F. Maximizing the Lagrangean

Since L( · , λ1, λ2) is convex and Fréchet differentiable on Ξ, and since Ω is convex,

the maximum of L( · , λ1, λ2) over Ω is achieved at x0 ∈ Ω iff

∇x−x0L(x0, λ1, λ2) ≤ 0

for all x ∈ Ω. In this section we shall identify the restrictions that this places on λ1

and λ2.

To this end, put

Y =
³
BV(Θ,R) ∩ C(Θ,R)

´
× R;

and consider the affine transformation

S : Y →
³
BV(Θ,R) ∩ C(Θ,R)

´2

10
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that maps y = (u, r) to x = (u0 + u,w0 + w), where w is the unique solution of the

equation θ du+ β dw = 0 with boundary condition w( θ ) = r.

For any y ∈ Y , we have

∇S(y)−x0L(x0, λ1, λ2) =
Z ³

θ u+ w
´
dF −

Z ³
C 0(u0)u+K 0(w0)w

´
dΛ1

+

Z ³
b
³

θ
(1+π)β

´
u− w

´
dΛ2

=

Z ³
θ u+ w

´
dF −

Z ³
C0(u0)
K0(w0)

u+ w
´
deΛ1

+

Z ³
b
³

θ
(1+π)β

´
u− w

´
dΛ2

(where deΛ1 = K 0(w0) dΛ1). Furthermore, integrating by parts, we haveZ
w dF = [wF ]θθ− −

Z
F dw = w( θ )F ( θ ) +

Z
F

θ

β
du

(because F ( θ−) = 0 and dw = − θ
β
du)

= r F ( θ ) +

Z
F

θ

β
du.

Moreover Z
F θ du =

Z
F (θ du+ udθ)−

Z
F udθ

= [ θ uF ]θθ− −
Z

θ u dF −
Z

F udθ

= θ u( θ )F ( θ )−
Z

θ u dF −
Z

F udθ

(where we have again used the fact that F ( θ−) = 0). HenceZ
w dF =

µ
θ

β
u( θ ) + r

¶
F ( θ )− 1

β

Z
u (θ dF + F dθ).

Similarly, Z
w deΛ1 = µ θ

β
u( θ ) + r

¶ eΛ1( θ )− 1
β

Z
u (θ deΛ1 + eΛ1 dθ)

11
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and Z
w dΛ2 =

µ
θ

β
u( θ ) + r

¶
Λ2( θ )− 1

β

Z
u (θ dΛ2 + Λ2 dθ).

Overall, then,

∇S(y)−x0L(x0, λ1, λ2) =
µ
θ

β
u( θ ) + r

¶³
F ( θ )− eΛ1( θ )− Λ2( θ )

´
− 1

β

Z
u
³
(1− β) θ dF + F dθ

´
+
1

β

Z
u
³³

θ − β C0(u0)
K0(w0)

´
deΛ1 + eΛ1 dθ´

+
1

β

Z
u
³³

θ + β b
³

θ
(1+π)β

´´
dΛ2 + Λ2 dθ

´
.

Next, it is easy to see that the mapping

y 7→∇S(y)−x0L(x0, λ1, λ2)

defines a continuous linear functional on Y . Since it does not depend on the deriva-

tives of y, this functional extends uniquely to a continuous linear functional

y∗ : C(Θ,R)×R→ R.

Indeed, we have

y∗ = (u∗, r∗) ∈M(Θ,R)×R = (C(Θ,R)×R)∗ ,

where

u∗ = − 1
β

³
(1− β) θ dF + F dθ

´
+
1

β

³³
θ − β C0(u0)

K0(w0)

´
deΛ1 + eΛ1 dθ´

+
1

β

³³
θ + β b

³
θ

(1+π)β

´´
dΛ2 + Λ2 dθ

´
+

θ

β

³
F ( θ )− eΛ1( θ )− Λ2( θ )

´
dI,

r∗ = F ( θ )− eΛ1( θ )− Λ2( θ )

and I is the distribution function of the unit mass at θ.

Finally, it is easy to see that there exists ε > 0 such that S(y) ∈ Ω for all

y ∈ Y ∩Bε(0), where Bε(0) is the open ball in C(Θ,R)×R with radius ε and centre

12
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0. It follows that hy, y∗i ≤ 0 for all y ∈ Y ∩Bε(0). But Y ∩Bε(0) is dense in Bε(0).

Hence hy, y∗i ≤ 0 for all y ∈ Bε(0). Hence y∗ = 0. In other words, we have

0 = − 1
β

³
(1− β) θ dF + F dθ

´
+
1

β

³³
θ − β C0(u0)

K0(w0)

´
deΛ1 + eΛ1 dθ´

+
1

β

³³
θ + β b

³
θ

(1+π)β

´´
dΛ2 + Λ2 dθ

´
+

θ

β

³
F ( θ )− eΛ1( θ )− Λ2( θ )

´
dI (10)

and

0 = F ( θ )− eΛ1( θ )− Λ2( θ ). (11)

Taking advantage of (11), (10) simplifies to

0 = −Gdθ +
³³

θ − β C0(u0)
K0(w0)

´
deΛ1 + eΛ1 dθ´

+
³³

θ + β b
³

θ
(1+π)β

´´
dΛ2 + Λ2 dθ

´
, (12)

where G is given by the formula G(θ) = (1− β) θ F 0(θ) + F (θ).

G. A One-Parameter Family of Utility Curves

We shall consider a family of utility curves depending on the single parameter θ1 ∈¡
0, θ

¤
. For each θ1, we begin by finding the point (c∗(θ1), k∗(θ1)) that would be chosen

by a self 1 of type θ1 from the ambient budget set A. The utility curve corresponding

to θ1 is then the utility curve associated with a two-part budget set with slopes of

−1 and −(1 + π) to the left and right of a kink at (c∗(θ1), k∗(θ1)). Notice that we

specifically allow for the possibility that θ1 < θ.

Put θ2 = (1 + π) θ1. Knife-edge cases apart, there are then five possible cases

arising from the relative positions of the two non-trivial intervals
£
θ , θ

¤
and [θ1, θ2]:

Case 1
£
θ , θ

¤
contains [θ1, θ2];

Case 2 [θ1, θ2] contains
£
θ , θ

¤
;

Case 3 the two intervals overlap, with [θ1, θ2] lying to the left and
£
θ , θ

¤
to the

right;

Case 4 the two intervals overlap, with
£
θ , θ

¤
lying to the left and [θ1, θ2] to the

right;

Case 5 [θ1, θ2] lies entirely to the left of
£
θ , θ

¤
.

13
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(The case in which
£
θ , θ

¤
lies entirely to the left of [θ1, θ2] cannot occur, because we

are confining θ1 to the interval
¡
0, θ

¤
.)

G.1. Case 1. If the utility curve corresponding to θ1 is to be an optimum, then

the associated multipliers λ1 and λ2 must satisfy the three necessary conditions (4),

(5) and (12) (i.e. complementary slackness for the first constraint, complementary

slackness for the second constraint and the measure equation). In this section, we

show that these three necessary conditions tie down λ1 and λ2 uniquely. The fourth

necessary condition, namely the boundary condition (11), is not needed at this stage.

(It will be used below to tie down θ1.)

By construction, the consumption-penalty constraint is strictly slack on [ θ, θ2)

and the budget constraint is strictly slack on
¡
θ2, θ

¤
. Hence dΛ2 = 0 on the former

interval and deΛ1 = 0 on the latter. Furthermore (12) implies that
(1− β) θ2∆F (θ2) = (θ2 − θ1)∆eΛ1(θ2) + ³θ2 + β b

³
θ2

(1+π)β

´´
∆Λ2(θ2),

where ∆F (θ2), ∆eΛ1(θ2) and ∆Λ2(θ2) are the atoms of dF , deΛ1 and dΛ2 at θ2. But

Assumption A1 implies that ∆F (θ2) = 0. Since all the terms on the right-hand side

of the equation are non-negative, it follows that ∆eΛ1(θ2) = ∆Λ2(θ2) = 0. Hence

dΛ2 = 0 on {θ2} (and therefore on [ θ, θ2]) and deΛ1 = 0 on {θ2} (and therefore on£
θ2, θ

¤
).

Now let us consider the three intervals [ θ, θ1], [θ1, θ2] and
£
θ2, θ

¤
in turn. On

[ θ, θ1], we have
C0(u0)
K0(w0)

= θ
β
, Λ2 = 0 and dΛ2 = 0. Hence (12) becomes

0 = −Gdθ + eΛ1 dθ.
It follows that eΛ1 = G almost everywhere with respect to Lebesgue measure dθ. Since

both eΛ1 and G are functions of bounded variation, it then follows (bearing in mind

the convention that functions of bounded variation are right continuous) that eΛ1 = G

everywhere on [ θ, θ1), and hence that eΛ1(θ1−) = G(θ1−).
On [θ1, θ2], we have

C0(u0)
K0(w0)

= θ1
β
, Λ2 = 0 and dΛ2 = 0. Hence (12) becomes

0 = −Gdθ + (θ − θ1) deΛ1 + eΛ1 dθ.

14
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This implies that eΛ1 takes the form
eΛ1(θ) = 1

θ − θ1

Z θ

θ1

G(t) dt

for all θ ∈ (θ1, θ2), that eΛ1(θ1) = G(θ1) (since eΛ1 and G are right continuous) and

that eΛ1(θ2) = eΛ1(θ2−) = 1
θ2−θ1

R θ2
θ1

G(θ) dθ (since eΛ1 cannot have a jump at θ2).
On

£
θ2, θ

¤
, we have deΛ1 = 0. Hence (12) becomes
0 = −Gdθ + eΛ1 dθ + ³θ + β b

³
θ

(1+π)β

´´
dΛ2 + Λ2 dθ.

Furthermore, we have the boundary condition Λ2(θ2) = 0 (since Λ2 cannot have a

jump at θ2). Putting eΛ2 = Λ2 + eΛ1(θ2), this equation simplifies slightly to
0 = −Gdθ +

³
θ + β b

³
θ

(1+π)β

´´
deΛ2 + eΛ2 dθ,

with boundary condition eΛ2(θ2) = eΛ1(θ2).
G.2. Cases 2 to 5. In order to handle the remaining cases, we need a unified

construction. (This construction includes Case 1 too.) It is more convenient to work

in terms of the distribution function Ψ = Ψ( · ; θ1) of the total multiplier deΛ1 + dΛ2,

and to view this as a function on
£
0, θ

¤
. The construction is then very simple. For

all θ1 ∈
¡
0, θ

¤
:

1. put Ψ = G on [ 0, θ1];

2. if θ1 < θ (so that Ψ is not yet defined on the whole of
£
0, θ

¤
), then let Ψ be

the unique bounded solution of the o.d.e.

0 = −G+ (θ − θ1)Ψ
0 +Ψ

on
¡
θ1, θ2 ∧ θ

¤
, i.e. put

Ψ(θ) =
1

θ − θ1

Z θ

θ1

G(t) dt;

3. if θ2 < θ (so that Ψ is still not defined on the whole of
£
0, θ

¤
), then let Ψ be

15
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the unique solution of the o.d.e.

0 = −G+
³
θ + β b

³
θ

(1+π)β

´´
Ψ0 +Ψ

on
¡
θ2, θ

¤
with boundary condition

Ψ(θ2) =
1

θ2 − θ1

Z θ2

θ1

G(t) dt.

Then, using arguments similar to those of the preceding section, it is easy to verify

that the three necessary conditions (4), (5) and (12) together imply that, for all

θ1 ∈
¡
0, θ

¤
, Ψ must take the given form.

Remark 6. We can easily extend the construction of Ψ to include the case θ1 = 0.

Indeed, in line with the construction above, we can let Ψ( · ; 0) be the unique bounded
solution of the o.d.e.

0 = −G+
³
θ + β b

³
θ

(1+π)β

´´
Ψ0 +Ψ

on
¡
0 , θ

¤
.

Remark 7. With this definition of Ψ( · ; 0), Ψ( · ; θ1) is independent of θ1 for θ1 ∈£
0, 1

1+π
θ
¤
.

H. Existence of an Optimum

For all θ1 ∈
¡
0, θ

¤
, we have shown that there exists a unique Ψ = Ψ( · ; θ1) satisfying

the two complementary slackness conditions (4) and (5) and the measure equation

(12). This Ψ( · ; θ1) does not in general satisfy the boundary condition (11). The
purpose of the current section is to establish that there is at least one choice of θ1 for

which (11) is satisfied.

For all θ1 ∈
¡
0, θ

¤
, put ψ(θ1) = Ψ

¡
θ ; θ1

¢
. Now consider G. We certainly have

G = 0 on ( 0, θ ) and G = F ( θ ) on
£
θ ,∞ ¢. Furthermore Assumption A3 tells us that

G is first increasing (on (0, θM)) and then decreasing (on (θM ,∞)). It is therefore
obvious that there exists θF ∈

£
θ , θ

¤
such that G < F ( θ ) on ( 0, θF ) and G ≥ F ( θ )

on
£
θF , θ

¤
. Our first lemma sharpens this observation.

Lemma 8. There exists θF ∈
£
θ , θ

¢
such that G ≤ F ( θ ) on

¡
0, θF

¢
and G > F ( θ )

on
¡
θF , θ

¢
.

16
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Proof. Suppose first that θM < θ. Suppose further that there exists ξ0 ∈
¡
θM , θ

¢
such that G(ξ0) = G( θ ). Since G0 ≤ 0 on (θM ,∞) ⊃ ¡ξ0, θ ¤, it follows that G0 = 0

on
¡
ξ0, θ

¤
. We also know that G = F ( θ ) on

£
θ ,∞¢, and therefore that G0 = 0 on¡

θ ,∞¢. Overall, then, G0 = 0 on (ξ0,∞). Hence θα F 0(θ) is constant on (ξ0,∞),
where α = 2−β

1−β . (Cf. the proof of Proposition 1.) Hence F
0 = 0 on (ξ0,∞). But this

contradicts the fact that θ is the maximum of the support of F . We may therefore

conclude that G > G( θ ) = F ( θ ) on
¡
θM , θ

¢
.

Suppose second that θM = θ. Then G0 ≥ 0 on (0, θ ). Hence θα F 0(θ) is non-

decreasing on (0, θ ). In particular, if we fix ξ1 ∈
¡
θ , θ

¢
, then we will have θα F 0(θ) ≥

ξα1 F
0(ξ1) for all θ ∈

¡
ξ1 , θ

¢
. Letting θ ↑ θ, it follows that θα F 0( θ−) ≥ ξα1 F

0(ξ1).

But F 0(ξ1) > 0, since ξ1 lies in the interior of the support of F . Hence F
0( θ−) > 0.

Hence G( θ−) = (1 − β) θ F 0( θ−) + F ( θ ) > F ( θ ). Hence there exists ε > 0 such

that G > F ( θ ) on
¡
θ − ε, θ

¢
.

Overall, then, we have the following picture: G = 0 on (0, θ ); there exists ξ2 ∈£
θ , θ

¢
such that G > F ( θ ) on

¡
ξ2, θ

¢
; and G = F ( θ ) on

£
θ ,∞¢. Furthermore

Assumption A3 ensures that
©
θ | G(θ) > F ( θ )

ª
is an interval. We may therefore

put θF = inf
©
θ | θ ∈ £ θ , θ ¢ , G(θ) > F ( θ )

ª
.

Now, it follows from the construction of Ψ given in Section G.2 that Ψ( θ ; θ1)

is a convex combination of the values of G on the interval
¡
θ1, θ

¢
. Combining this

observation with Lemma 8, we obtain:

Lemma 9. ψ > F ( θ ) on
£
θF , θ

¢
. ¥

We also have:

Lemma 10. ψ < F ( θ ) on
¡
0, 1

1+π
θ
¤
.

Proof. We begin by noting that Ψ = Ψ( · ; θ1) is independent of θ1 for θ1 ∈£
0, 1

1+π
θ
¤
. It is therefore the unique bounded solution of the o.d.e.

0 = −G+
³
θ + β b

³
θ

(1+π)β

´´
Ψ0 +Ψ (13)

on
¡
0 , θ

¤
. We compare Ψ with the function Φ which is the unique bounded solution

of the o.d.e.

0 = −G+ θΦ0 + Φ (14)

17
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on
¡
0 , θ

¤
. Now

Φ(θ) =
1

θ

Z θ

0

G(t) dt = (1− β)F (θ) + β
1

θ

Z θ

0

F (t) dt.

Hence: Φ = 0 on
¡
0 , θ

¤
; and 0 < Φ < F on

¡
θ , θ

¤
. Hence

Φ0 =
G− Φ

θ
≥ F − Φ

θ
≥ 0

on
¡
0 , θ

¤
, with strict inequality on

¡
θ , θ

¤
. Furthermore, Φ is a supersolution of the

equation for Ψ. Indeed, we have

−G+
³
β b
³

θ
(1+π)β

´
+ θ
´
Φ0 + Φ

= −G+ β b
³

θ
(1+π)β

´
Φ0 + θΦ0 + Φ

(on rearranging)

= β b
³

θ
(1+π)β

´
Φ0

(since Φ satisfies (14))

≥ 0
on
¡
0 , θ

¤
, with strict inequality on

¡
θ , θ

¤
. That is, Φ is a supersolution of the

equation for Ψ, and a strict supersolution on
¡
θ , θ

¤
. Hence Φ > Ψ on

¡
θ , θ

¤
. In

particular, ψ(0) = Ψ( θ ) < Φ( θ ) < F ( θ ). The general case now follows on noting

that Ψ( · ; θ1) = Ψ( · ; 0) for all θ1 ∈
¡
0, 1

1+π
θ
¤
. Cf. the remark at the end of Section

G.2.

Since ψ is continuous, we can combine Lemmas 9 and 10 to obtain:

Proposition 11. There exists θ1 ∈
¡

1
1+π

θ , θF
¢
such that ψ(θ1) = F ( θ ). ¥

That is, there exists θ1 ∈
¡

1
1+π

θ, θF
¢
such that equation (11) is satisfied. However,

we still need to verify that the multipliers associated with any such θ1 are non-

negative.

I. Non-Negativity of the Multiplier

In this section we show that, if θ1 ∈
¡
0, θF

¢
is such that ψ(θ1) ≤ F ( θ ), then

Ψ = Ψ( · ; θ1) is non-decreasing on
£
0, θ

¤
. We treat the intervals [0, θ1],

¡
θ1, θF

¢
and

£
θF , θ

¤
in turn. We begin with a simple lemma.

18
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Lemma 12. θF ≤ θM .

Proof. In the light of Lemma 8, supG > F ( θ ). Moreover it follows from the

definition of θM that supG = max {GL(θM), G(θM)}. There are therefore two possi-
bilities. Either GL(θM) > F ( θ ), in which case there is a left neighbourhood of θM
on which G > F ( θ ), and therefore θF < θM . Or G(θM) > F ( θ ), in which case

necessarily θM ≥ θF .

Lemma 13. G0 ≥ 0 on £ 0, θF ¤.
Proof. From Lemma 12 we know that

£
0, θF

¢ ⊂ [ 0, θM ). Hence G0 ≥ 0 on£
0, θF

¢
. However, G ≤ F ( θ ) on

£
0, θF

¢
and G > F ( θ ) on

¡
θF , θ

¢
. Hence

∆G( θF ) ≥ 0. Hence G0 ≥ 0 on £ 0, θF ¤.
Proposition 14. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ0 ≥ 0 on [0, θ1].

Proof. Since ψ(θ1) ≤ F ( θ ), Lemma 9 implies that θ1 < θF . Hence [0, θ1] ⊂£
0, θF

¢
. But Ψ = G on [0, θ1] by construction of Ψ, and Lemma 13 tells us that

G0 ≥ 0 on £0, θF ¤. It follows that Ψ0 ≥ 0 on [0, θ1].
In order to show that Ψ0 ≥ 0 on ¡θ1, θ ¤, we use the fact that Ψ solves

0 = −G+ (θ − θ1)Ψ
0 +Ψ (15)

on
¡
θ1, θ2 ∧ θ

¤
and

0 = −G+
³
θ + β b

³
θ

(1+π)β

´´
Ψ0 +Ψ (16)

on
¡
θ2 ∧ θ , θ

¤
. We also make use of the corresponding o.d.e. for θ, namely

θ̇ = − (θ − θ1) (17)

on
¡
θ1, θ2 ∧ θ

¤
and

θ̇ = −
³
θ + β b

³
θ

(1+π)β

´´
(18)

on
¡
θ2 ∧ θ , θ

¤
. Specifically, for all g, h ∈ ¡θ1, θ ¤ such that h < g, let T (h, g) denote

the time at which the solution of the o.d.e. (17-18) for θ starting from g hits h, and

put S(h, g) = exp(−T (h, g)). Notice that S(·, g) increases from 0 at θ1 to 1 at g.

Lemma 15. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ ≤ G on (θ1, θM).
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Proof. Since ψ(θ1) ≤ F ( θ ), Lemma 9 implies that θ1 < θF . Furthermore Lemma

12 tells us that θF ≤ θM . For all g ∈ (θ1, θM), we therefore have

Ψ(g) =

Z g

θ1

∂S
∂h
(h, g)G(h) dh ≤

Z g

θ1

∂S
∂h
(h, g)G(g−) dh

(with equality iff G(g−) = G(θ1))

= G(g−).

Taking limits from the right (and using the continuity of Ψ and the right continuity

of G) then yields Ψ ≤ G.

Lemma 16. The sign of Ψ0 coincides with that of G−Ψ on
¡
θ1, θ

¤
.

Proof. We have

Ψ0 =
G−Ψ

θ − θ1

on
¡
θ1, θ2 ∧ θ

¤
(from equation (15)) and

Ψ0 =
G−Ψ

θ + β b
³

θ
(1+π)β

´
on
¡
θ2 ∧ θ , θ

¤
(from equation (16)). Bearing in mind that we have θ − θ1 > 0 on¡

θ1, θ2 ∧ θ
¤
, it follows that the sign of Ψ0 coincides with that of G−Ψ on ¡θ1, θ2 ∧ θ¤∪¡

θ2 ∧ θ , θ
¤
=
¡
θ1, θ

¤
.

Proposition 17. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ0 ≥ 0 on ¡θ1, θF¢.
Proof. From Lemma 15 we know that Ψ ≤ G on (θ1, θM) and therefore on¡
θ1, θF

¢ ⊂ (θ1, θM). Lemma 16 then implies that Ψ0 ≥ 0 there.

Proposition 18. Suppose that ψ(θ1) ≤ F ( θ ). Then Ψ0 > 0 on
£
θF , θ

¢
.

Proof. For all θ ∈ £ θF , θ ¢, we have
Ψ( θ ) = S(θ, θ )Ψ(θ) +

Z θ

θ

∂S
∂h
(h, θ )G(h) dh. (19)
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Since Z θ

θ

∂S
∂h
(h, θ ) dh = 1− S(θ, θ ),

this means that Ψ( θ ) is a convex combination of Ψ(θ) and the values of G on
¡
θ, θ

¤
.

But Ψ( θ ) = ψ(θ1) ≤ F ( θ ) and G > F ( θ ) on
¡
θ, θ

¢
. So we must have Ψ(θ) < F ( θ ).

On the other hand, G(θ) ≥ F ( θ ) since θ ≥ θF . Lemma 16 therefore implies that

Ψ0(θ) > 0.

J. Uniqueness of the Optimum

At this point we have established that the utility curve associated with θ1 solves

the main maximization problem (3) iff ψ(θ1) = F ( θ ). Furthermore ψ < F ( θ ) on£
0, 1

1+π
θ
¤
and ψ > F ( θ ) on

£
θF , θ

¢
. Hence there exists θ1 ∈

¡
1
1+π

θ , θF
¢
such

that ψ(θ1) = F ( θ ). In the current section, we show that the set of θ1 for which

ψ(θ1) = F ( θ ) is an interval. Furthermore, if we strengthen Assumption A3 by

requiring that G is strictly increasing to the left of its peak, then ψ0 > 0 over the

relevant range. It then follows that there is a unique θ1 for which ψ(θ1) = F ( θ ).

This result is limited: it shows that — under the strengthened version of A3 — there is

exactly one solution to problem (3) within our one-parameter family of utility curves;

but it does not show that that there is exactly one solution to problem (3) in Ω. It

is, however, very suggestive.

The main idea of the proof is to find an explicit formula for ψ0, and then use

this formula to determine the sign of ψ0. Of course, the formula depends on whether

θ1 <
1
1+π

θ or θ1 > 1
1+π

θ. In the former case: θ2 = (1 + π) θ1 < θ; the consumption-

penalty constraint is strictly binding; and the types in the range
£
θ2, θ

¤
will choose

to incur the consumption penalty. In the latter case: θ2 = (1 + π) θ1 > θ; the

consumption-penalty constraint is strictly slack; and no type will choose to incur the

consumption penalty.

In order to state the formula for ψ0, it will be helpful to introduce the functions

φ, χ, ζ and η given by the formulae

φ(θ1) =
1

θ2 − θ1

Z θ2

θ1

G(θ) dθ (20)
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for all θ1 ∈ (0,∞) (where we have suppressed the dependence of θ2 on θ1),

χ(θ1) =
1

θ − θ1

Z θ

θ1

G(θ) dθ (21)

for all θ1 ∈
¡
0, θ

¢
,

ζ(θ1) =

β
1+π

b
³
θ1
β

´
θ1
³
θ1 +

β
1+π

b
³
θ1
β

´´ (G(θ2)− φ(θ1)) +
1

π θ1
(G(θ2)−G(θ1)) (22)

for all θ1 ∈ (0,∞) (where we have suppressed the dependence of θ2 on θ1)and

η(θ1) =
χ(θ1)−G(θ1)

θ − θ1
(23)

for all θ1 ∈
¡
0, θ

¢
.

Lemma 19. ψ0(θ1) = S(θ2, θ ) ζ(θ1) for θ1 ∈
¡
0, 1

1+π
θ
¢
.

Proof. Equation (19) gives

ψ(θ1) =

Z θ

θ2

∂S
∂h
(h, θ )G(h) dh+ S(θ2, θ )φ(θ1),

where we have used the fact that Ψ( θ ; θ1) = ψ(θ1) and Ψ(θ2; θ1) = φ(θ1). Hence

ψ0 = −∂S
∂h
(θ2, θ )G(θ2) θ

0
2 +

∂S
∂h
(θ2, θ ) θ

0
2 φ+ S(θ2, θ )φ

0

= exp(−T (θ2, θ ))
¡
∂T
∂h
(θ2, θ ) θ

0
2 (G(θ2)− φ) + φ0

¢
,

where we have suppressed the dependence of φ and ψ on θ1, and where θ
0
2 and φ0

denote the derivatives of θ2 and φ with respect to θ1. Furthermore

φ =
1

θ2 − θ1

Z θ2

θ1

G(t) dt

and

T (θ2, θ ) =

Z θ

θ2

dt

t+ β b
³

t
(1+π)β

´ .
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Hence

φ0 = − θ02 − 1
(θ2 − θ1)2

Z θ2

θ1

G(t) dt+
1

θ2 − θ1
(G(θ2) θ

0
2 −G(θ1))

=
1

θ2 − θ1
(−π φ+ ((1 + π)G(θ2)−G(θ1)))

=
1

θ1
(G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

and
∂T
∂h
(θ2, θ ) = − 1

θ2 + β b
³

θ2
(1+π)β

´ . (24)

Overall, then,

exp(T (θ2, θ ))ψ
0 = ∂T

∂h
(θ2, θ ) θ

0
2 (G(θ2)− φ) + φ0

= − 1 + π

θ2 + β b
³

θ2
(1+π)β

´ (G(θ2)− φ) +
1

θ1
(G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

=

 1

θ1
− 1

θ1 +
β
1+π

b
³
θ1
β

´
 (G(θ2)− φ) +

1

π θ1
(G(θ2)−G(θ1))

(collecting terms in (G(θ2) − φ) and (G(θ2) − G(θ1)), and using the fact that θ2 =

(1 + π) θ1)

=

β
1+π

b
³
θ1
β

´
θ1
³
θ1 +

β
1+π

b
³
θ1
β

´´ (G(θ2)− φ) +
1

π θ1
(G(θ2)−G(θ1)).

Making ψ0 the subject of this equation, we obtain the required result.

The second of the two formulae for ψ0 is given by the following lemma.

Lemma 20. ψ0 = η on
£
1
1+π

θ , θ
¢
.

Proof. We have ψ = χ on
£
1
1+π

θ , θ
¢
. Moreover it is easy to check that

χ0(θ1) =
χ(θ1)−G(θ1)

θ − θ1

on
¡
0, θ

¢
.
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There are now two main cases to consider. The more general of the two main cases

occurs when 1
1+π

θ < θF . In this case, there are three main subcases to consider:

Subcase 1 θ1 ∈
¡

1
1+π

θ , 1
1+π

θF
¤
. In this subcase, the consumption-penalty con-

straint is strictly binding in the sense that θ2 < θ. I.e. all the types in the

non-trivial range of
£
θ2, θ

¤
choose to make an early withdrawal from the penalty

account.

Subcase 2 θ1 ∈
£

1
1+π

θF ,
1
1+π

θ
¤
. In this subcase, the consumption-penalty con-

straint is weakly binding in the sense that θ2 ≤ θ.

Subcase 3 θ1 ∈
£

1
1+π

θ , θF
¢
. In this subcase, the consumption-penalty constraint is

weakly slack in the sense that θ2 ≥ θ.

The less general of the two main cases occurs when 1
1+π

θ ≥ θF . In this case, the

third subcase does not arise.

We deal with both of the two main cases simultaneously. The first subcase is

settled by the following lemma.

Lemma 21. Suppose that θ1 ∈
¡
0, 1

1+π
θF
¤
. Then ψ0(θ1) ≥ 0.

Proof. The proof relies on the formula ψ0(θ1) = S(θ2, θ ) ζ(θ1) given in Lemma 19.

This formula is valid for θ1 ∈
¡
0, 1

1+π
θ
¢ ⊃ ¡0, 1

1+π
θF
¤
.

We have [θ1, θ2] ⊂
¡
0, θF

¤
and therefore G0 ≥ 0 on [θ1, θ2]. Hence G(θ2) ≥ φ(θ1)

(with equality iff GL(θ2) = G(θ1)) and G(θ2) ≥ G(θ1). It then follows from formula

(22) that ζ(θ1) ≥ 0 (with equality iff G(θ2) = G(θ1)), and thence that ψ0(θ1) ≥ 0
(with equality iff G(θ2) = G(θ1)).

We now turn to the second subcase.

Lemma 22. Suppose that θ1 ∈
£

1
1+π

θF ,
1
1+π

θ
¤
and that ψ(θ1) ≤ F ( θ ). Then

G(θ2)− φ(θ1) ≥ 0.

Proof. We have θ2 ∈
£
θF , θ

¤
and therefore

G(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
¡

1
1+π

θF ,
1
1+π

θ
¢
, because then θ2 ∈

¡
θF , θ

¢
)

≥ ψ(θ1) = Ψ( θ ; θ1)
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(by assumption and by definition of ψ respectively)

≥ Ψ(θ2; θ1)

(with strict inequality if θ1 ∈
£

1
1+π

θF ,
1
1+π

θ
¢
, because then θ2 < θ)

= φ(θ1)

(by definition of φ).

Lemma 23. Suppose that θ1 ∈
£

1
1+π

θF ,
1
1+π

θ
¤
and that ψ(θ1) ≤ F ( θ ). Then

G(θ2)−G(θ1) > 0.

Proof. We have

G(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
¡

1
1+π

θF ,
1
1+π

θ
¢
)

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1)

(by assumption, by definition of ψ, because θ1 < θ and by construction of Ψ respec-

tively).

Combining Lemmas 22 and 23, we obtain the following result about the right-hand

derivative of ψ.

Lemma 24. Suppose that θ1 ∈
£
1
1+π

θF ,
1
1+π

θ
¢
and that ψ(θ1) ≤ F ( θ ). Then

ψ0(θ1) > 0.

Proof. The proof again relies on the formula ψ0(θ1) = S(θ2, θ ) ζ(θ1) given in

Lemma 19. In view of this formula, ψ0(θ1) > 0 if G(θ2) ≥ φ(θ1) and G(θ2) ≥ G(θ1)

with at least one strict inequality. But Lemmas 22 and 23 show that G(θ2) ≥ φ(θ1)

and G(θ2) > G(θ1) respectively.

We also need the corresponding result about the left-hand derivative of ψ.

Lemma 25. Suppose that θ1 ∈
¡

1
1+π

θF ,
1
1+π

θ
¤
and that ψ(θ1) ≤ F ( θ ). Then

ψ0L(θ1) > 0.
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Proof. The proof parallels that of Lemma 24, with minor changes. First of all,

bearing in mind that φ is continuous, we have

ζL(θ1) =

β
1+π

b
³
θ1
β

´
θ1
³
θ1 +

β
1+π

b
³
θ1
β

´´ (GL(θ2)− φ(θ1)) +
1

π θ1
(GL(θ2)−GL(θ1)) (25)

for all θ1 ∈ (0,∞). As in Lemma 19, we then have ψ0L(θ1) = S(θ2, θ ) ζL(θ1) for

θ1 ∈
¡
0, 1

1+π
θ
¤
. Next, just as the single peakedness of G implies that G > F ( θ )

on
¡
θF , θ

¢
, so it also implies that GL > F ( θ ) on

¡
θF , θ

¢
. Arguing as in Lemma 22,

we can therefore show that GL(θ2) − φ(θ1) ≥ 0 for θ1 ∈
¡

1
1+π

θF ,
1
1+π

θ
¤
, with strict

inequality if θ1 < 1
1+π

θ. (We cannot however extend this to θ1 ∈
£
1
1+π

θF ,
1
1+π

θ
¤
,

since we cannot deduce from the fact that GL > F ( θ ) on
¡
θF , θ

¢
that GL ≥ F ( θ ) at

θF .) Next, as in Lemma 23, we have GL(θ2)−GL(θ1) > 0 on
¡

1
1+π

θF ,
1
1+π

θ
¤
. Indeed,

as in the proof of that lemma, we can show that

GL(θ2) ≥ F ( θ )

(with strict inequality if θ1 ∈
¡

1
1+π

θF ,
1
1+π

θ
¢
)

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1).

In particular, G(θ1) < F ( θ ); and therefore θ1 < θF ≤ θM ; and therefore GL(θ1) ≤
G(θ1). Finally, applying (25) yields the required result.

Next, we prove a lemma that will be needed for the third subcase.

Lemma 26. χ > G on
£
0, θF

¢
.

Proof. For all θ1 ∈
£
0, θF

¢
, we have

χ(θ1) =
1

θ − θ1

Z θ

θ1

G(θ) dθ =
1

θ − θ1

Z θF

θ1

G(θ) dθ +
1

θ − θ1

Z θ

θF

G(θ) dθ.

Moreover: Z θF

θ1

G(θ) dθ ≥ ( θF − θ1)G(θ1),
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since G0 ≥ 0 on £0, θF ¤ by Lemma 13; andZ θ

θF

G(θ) dθ > ( θ − θF )F ( θ ) ≥ ( θ − θF )G(θ1),

since G > F ( θ ) on
¡
θF , θ

¢
and (by Lemma 8) G ≤ F ( θ ) on

¡
0, θF

¢
. Hence

χ(θ1) >
θF − θ1

θ − θ1
G(θ1) +

θ − θF

θ − θ1
G(θ1) = G(θ1),

as required.

We can now deal with the third subcase, which arises only in the first scenario.

Lemma 27. Suppose that 1
1+π

θ < θF — i.e. that we are in the first scenario — and

that θ1 ∈
£

1
1+π

θ, θF
¢
. Then ψ0(θ1) > 0.

Proof. Since θ1 ≥ 1
1+π

θ, we may apply Lemma 20 to obtain

ψ0(θ1) =
χ(θ1)−G(θ1)

θ − θ1
.

Since θ1 < θF , we may apply Lemma 26 to obtain χ(θ1) − G(θ1) > 0. The result

follows.

Combining Lemmas 21, 24, 25 and 27, we obtain:

Proposition 28. The set of θ1 ∈
¡
0, θF

¢
such that ψ(θ1) = F ( θ ) is a closed inter-

val. ¥

The idea behind the proof of the proposition is straightforward. We know from

Proposition 11 that all solutions to the equation ψ = F ( θ ) lie in
¡

1
1+π

θ , θF
¢
. Hence,

to prove the proposition, we need only show that ψ0 ≥ 0 on this interval. Furthermore
this is what Lemma 21 (for the interval

¡
1
1+π

θ , 1
1+π

θF
¤
), Lemmas 24 and 25 (for the

interval
¡

1
1+π

θF ,
1
1+π

θ
¢
) and Lemma 27 (for the interval

£
1
1+π

θ, θF
¢
) seem to tell us.

The only complication is that Lemmas 24 and 25 both require the side condition

ψ ≤ F ( θ ). However, they make up for this by providing strict rather than weak

inequalities. The proof of the Proposition does therefore go through.

Indeed, we actually have ψ0 > 0 on the interval
¡

1
1+π

θF , θF
¢
. Hence, the only way

in which non-uniqueness can occur at all is if there is a non-trivial interval, contained
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in
¡

1
1+π

θ , 1
1+π

θF
¤
, on which ψ = F ( θ ). Unfortunately, it is possible to construct

an example in which precisely this form of non-uniqueness occurs. The spirit of the

example is that there exist θ3, θ4 ∈
£
θ , θF

¢
such that: (i) θ4 > (1 + π) θ3 (i.e. it is

possible that the entire interval of types associated with the kink lies within [θ3, θ4));

and (ii) GL(θ4) = G(θ3) (i.e. G is constant on [θ3, θ4)). It then follows that, if

there exists θ1 ∈
£
θ3,

1
1+π

θ4
¤
such that ψ(θ1) = F ( θ ), then ψ(θ1) = F ( θ ) for all

θ1 ∈
£
θ3,

1
1+π

θ4
¤
.

There are two ways to eliminate this possibility. The first way is to ensure that G

cannot have a “flat” of the type envisaged. The following assumption is more than

sufficient to ensure this:

A4 G is strictly increasing on [ θ, θM).13

We then have:

Proposition 29. Suppose that Assumptions A1-A4 hold. Then there is a unique
θ1 ∈

¡
0, θF

¢
such that ψ(θ1) = F ( θ ). ¥

Working with Assumption A4 certainly simplifies our comparative statics. See

Sections K-N below. However, we can still obtain satisfactory comparative-statics

results without it. See Section O below.

The second way to eliminate the possibility of non-uniqueness is ensure that G

cannot have a long enough flat:

Proposition 30. Suppose that Assumptions A1-A3 hold, and that π > θ−θ
θ
. Then

there is a unique θ1 ∈
¡
0, θF

¢
such that ψ(θ1) = F ( θ ). ¥

In particular, if π = ∞, then we there is a unique optimum within our one-

parameter family of candidate optima.

K. Comparative Statics with A4

The analysis of Sections H-J shows that, for all π ∈ [0,∞), the set of solutions of the
equation

ψ(θ1, π) = F ( θ ) (26)

13Notice that G is identically 0 on (0, θ ). It does not therefore make sense to require that G is
strictly increasing on (0, θM ).
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is a non-empty interval. We denote this interval by τ(π) = [ τ(π), τ(π) ]. The purpose

of the current section is to investigate the dependence of τ on π.

In order to simplify the exposition, it will be helpful to assume for the time being

that A4 holds. This ensures that the interval τ(π) collapses to a single point, which

we shall denote by τ 1(π). It also ensures that
∂ψ
∂θ1
(τ 1(π), π) > 0.

If we assume further that all the functions involved are sufficiently smooth, then

we can apply the implicit function to the equation

ψ(τ 1(π), π) = F ( θ )

to conclude that

τ 01 = −
∂ψ
∂π
∂ψ
∂θ1

. (27)

In particular: τ 1 will be increasing (decreasing) in π iff ∂ψ
∂π

< 0
¡
∂ψ
∂π

> 0
¢
; and the

allocation to the illiquid account will be increasing (decreasing) in π iff ∂ψ
∂π

> 0¡
∂ψ
∂π

< 0
¢
.

Motivated by these observations, we look first at the case in which the maximum-

penalty constraint is strictly binding. More precisely, we put τ 2(π) = (1 + π) τ 1(π),

and we consider the case in which τ 2(π) < θ. In other words, there is a non-trivial

interval of types
¡
τ 2(π), θ

¢
who choose to consume out of the illiquid account and

therefore pay the penalty for doing so. In this case we begin by finding explicit

formulae for ∂ψ
∂π
and ∂ψ

∂θ1
. We then go on to find conditions under which ∂ψ

∂π
> 0 and

∂ψ
∂θ1

> 0, thereby ensuring that τ 01 < 0 (and hence that the allocation to the illiquid

account will be strictly increasing in π).

We look second at the case in which the maximum-penalty constraint is strictly

slack. More precisely, we consider the case in which τ 2(π) > θ. In other words, even

the highest type is not tempted to consume out of the illiquid account. In this case

we again begin by finding explicit formulae for ∂ψ
∂π
and ∂ψ

∂θ1
. It turns out that ∂ψ

∂π
= 0.

We therefore concentrate on finding conditions under which ∂ψ
∂θ1

> 0, thereby ensuring

that τ 01 = 0 (and hence that the allocation to the illiquid account does not change

with π).

We look third at the intermediate case in which τ 2(π) = θ. This case is important

because it is τ 2(π) that determines whether we are in the strictly binding case τ 2(π) <

θ or the strictly slack case τ 2(π) > θ. Our analysis of the comparative statics of

our problem is not therefore complete until we have understood how the transition
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between these two cases occurs.

L. The Strictly Binding Case

In this section we focus on the set V of (θ1, π) such that

1. θ1 ∈
¡
0, θ

¢
,

2. π ∈ (0,∞) and
3. θ2 = (1 + π) θ1 < θ.

In other words, we do not impose the requirement that θ1 = τ 1(π) (i.e. that θ1 be

optimal for the given π), but we do require that the maximum-penalty constraint is

binding (in the sense that types in the non-empty interval
¡
θ2, θ

¢
are choosing to pay

the penalty).

L.1. The formula for ∂ψ
∂π
. Consider the o.d.e.

θ̇ = −
³
θ + β b

³
θ

(1+π)β

´´
(28)

on
£
θ2, θ

¤
, with initial condition θ(0) = θ. Let T (h;π) denote the first hitting time

of h ∈ £ θ2, θ ¤, and put S(h;π) = exp(−T (h;π)). Then the formula for ∂ψ
∂π
is given

by the following proposition.

Proposition 31. Suppose that θ2 < θ. Then

∂ψ

∂π
(θ1, π) =

µ
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π)

¶
(G(θ2)− φ(θ1, π))

−
Z
(θ2,θ ]

∂S

∂π
(h, π) dG(h).

Proof. Equation (19) can be written

ψ(θ1, π) =

Z
[ θ2,θ ]

∂S

∂h
(h, π)G(h) dh+ S(θ2, π)φ(θ1, π).

Hence

∂ψ

∂π
=

Z
[ θ2,θ ]

∂2S

∂h∂π
(h, π)G(h) dh− ∂S

∂h
(θ2, π)G(θ2)

∂θ2
∂π

+

µ
∂S

∂h
(θ2, π)

∂θ2
∂π

+
∂S

∂π
(θ2, π)

¶
φ+ S(θ2, π)

∂φ

∂π
, (29)
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where we have suppressed the dependence of ψ and φ on θ1 and π. Now:Z
[ θ2,θ ]

∂2S

∂h∂π
(h, π)G(h) dh =

Z
[ θ2,θ ]

∂2S

∂π∂h
(h, π)G(h) dh

=

·
∂S

∂π
(h, π)G(h)

¸θ
θ2−
−
Z
[ θ2,θ ]

∂S

∂π
(h, π) dG(h)

= −∂S
∂π
(θ2, π)G(θ2−)−

Z
[ θ2,θ ]

∂S

∂π
(h, π) dG(h)

= −∂S
∂π
(θ2, π)G(θ2)−

Z
(θ2,θ ]

∂S

∂π
(h, π) dG(h),

where we have used the fact that ∂S
∂π
( θ ) = 0;

∂φ

∂π
=

G(θ2)− φ

θ2 − θ1

∂θ2
∂π

=
G(θ2)− φ

π
;

and
∂θ2
∂π

= θ1.

Substituting into (29), we therefore obtain

∂ψ

∂π
= −∂S

∂π
(θ2, π)G(θ2)−

Z
(θ2,θ ]

∂S

∂π
(h, π) dG(h)− ∂S

∂h
(θ2, π)G(θ2) θ1

+

µ
∂S

∂h
(θ2, π) θ1 +

∂S

∂π
(θ2, π)

¶
φ+ S(θ2, π)

G(θ2)− φ

π

= −∂S
∂π
(θ2, π) (G(θ2)− φ(θ1, π))−

Z
(θ2,θ ]

∂S

∂π
(h, π) dG(h)

+

µ
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)

¶
(G(θ2)− φ(θ1, π)) .

The required formula now follows on rearranging.

In view of Proposition 31, it is clear that there are three main contributions to
∂ψ
∂π
, namely:

1.
1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π);

2. G(θ2)− φ(θ1, π);

3. −
Z
(θ2,θ ]

∂S

∂π
(h, π) dG(h).
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We discuss these contributions in turn.

The first contribution can be signed quite generally:

Proposition 32. Suppose that θ2 ≤ θ. Then

1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π) > 0.

In other words, Contribution 1 is strictly positive.

Proof. Explicit calculation shows that

1

π
S(θ2, π)− θ1

∂S

∂h
(θ2, π)− ∂S

∂π
(θ2, π) =

N

D
,

where

N = 1 + (1 + π)

µ
θ2

β(1 + π)

¶1/ρ
+

µ
θ

β(1 + π)

¶1/ρ
+ (1 + π)

µ
θ2

β(1 + π)

¶1/ρµ
θ

β(1 + π)

¶1/ρ
+ ρ π

Ãµ
θ

β(1 + π)

¶1/ρ
−
µ

θ2
β(1 + π)

¶1/ρ!
.

and

D = π

Ã
1 + (1 + π)

µ
θ2

β(1 + π)

¶1/ρ!1−ρÃ
1 + (1 + π)

µ
θ

β(1 + π)

¶1/ρ!1+ρ
.

Now the last term in the formula for N is non-negative, since θ2 ≤ θ. Hence N > 0.

Finally, it is clear that D > 0.

The second contribution can only be signed when θ1 = τ 1(π) (or, more generally,

when θ2 ∈
¡
θ , θ

¢
and ψ(θ1) ≤ F ( θ )). This, however, is enough for the purpose of

our comparative statics.

Proposition 33. Suppose that:

1. θ2 ∈
¡
θ , θ

¢
;

2. ψ(θ1) ≤ F ( θ );
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3. Assumption A4 holds.

Then G(θ2)− φ(θ1, π) > 0. In other words, Contribution 2 is strictly positive.

Proof. We break the proof down into the cases θ2 ∈
¡
θ , θF

¢
and θ2 ∈

£
θF , θ

¢
. In

the first case, the proof parallels that of Lemma 21. We have [θ1, θ2] ⊂
¡

1
1+π

θ, θF
¢ ⊂

(0, θM) and θ2 > θ. Assumption A4 therefore implies that G(θ2) > φ(θ1, π). In the

second case, it follows from the proof of Lemma 22 that G(θ2)− φ(θ1, π) > 0.

The third contribution cannot be signed under our primary assumptions. It is,

however, worth drawing attention to three special cases in which it can be signed.

In all three cases, the comparative statics end up going the same way: ∂ψ
∂π

> 0, and

therefore the allocation to the illiquid account will be increasing in π. We state these

three cases as separate propositions, corresponding to the cases ρ < 1, ρ = 1 and

ρ > 1.

Proposition 34. Suppose that:

1. ρ < 1;

2. G0 ≤ 0 on (θ ,∞) (i.e. θM = θ);

3. θ2 ∈
¡
θ , θ

¢
.

Then − R(θ2,θ ] ∂S∂π (h, π) dG(h) ≥ 0. In other words, Contribution 3 is non-negative.
Proof. It is easy to show that we have

∂S

∂π
(h, π)


> 0 if ρ < 1

= 0 if ρ = 1

< 0 if ρ > 1


for all h ∈ £θ2, θ ¢. Furthermore, we have

∂S

∂π
( θ , π) = 0 for all ρ,

because S( θ, π) = 1. We can therefore proceed as follows.

First, we know that θ2 ∈
¡
θ , θ

¢
. Hence G0 ≤ 0 on

¡
θ2, θ

¤ ⊂ (θ ,∞). Second,
ρ < 1. Hence

∂S

∂π
(·, π) ≥ 0 on

¡
θ2, θ

¤ ⊂ £
θ2, θ

¤
. Putting these two observations

together gives us the required conclusion.
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Remark 35. If G0 ≤ 0 on (θ ,∞) then necessarily ∆G(θ) > 0. Hence it is essential

for the proof of Proposition 34 that we restrict attention to θ2 > θ .

Proposition 36. Suppose that:

1. ρ = 1;

2. θ2 ∈
¡
0, θ

¢
.

Then − R(θ2,θ ] ∂S∂π (h, π) dG(h) = 0. In other words, Contribution 3 is zero.
Proof. This follows at once from the fact that ∂S

∂π
(·, π) = 0 on £θ2, θ ¤.

Proposition 37. Suppose that:

1. ρ > 1;

2. G0 ≥ 0 on ¡0, θ¢ (i.e. θM = θ);

3. θ2 ∈
¡
0, θ

¢
.

Then − R(θ2,θ ] ∂S∂π (h, π) dG(h) ≥ 0. In other words, Contribution 3 is non-negative.
Proof. Note first thatG0 ≥ 0 on ¡θ2, θ ¢ ⊂ ¡0, θ¢. Second, ρ > 1. Hence ∂S

∂π
(·, π) <

0 on
¡
θ2, θ

¢ ⊂ £θ2, θ ¤. (Cf. the proof of Proposition .) Third, ∂S
∂π
( θ , π) = 0. Putting

these three observations together, we obtainZ
(θ2,θ ]

∂S

∂π
(h, π) dG(h) =

Z
(θ2,θ )

∂S

∂π
(h, π) dG(h) +

Z
[θ,θ ]

∂S

∂π
(h, π) dG(h)

=

Z
(θ2,θ )

∂S

∂π
(h, π) dG(h) ≤ 0,

as required.

Remark 38. If G0 ≥ 0 on
¡
0, θ
¢
then necessarily ∆G(θ) < 0. The fact that

∂S
∂π
( θ , π) = 0 therefore plays an essential role in the proof of Proposition 37.
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L.2. The formula for ∂ψ
∂θ1
. Let T (h;π) and S(h;π) = exp(−T (h;π)) as in the

preceding section. Then the formula for ∂ψ
∂θ1

is given by the following proposition.

Proposition 39. Suppose that θ2 < θ. Then

∂ψ

∂θ1
(θ1, π) =

 β b
³
θ1
β

´
θ1
³
θ2 + β b

³
θ1
β

´´ (G(θ2)− φ(θ1, π))

+
1

π θ1
(G(θ2)−G(θ1))

S(θ2, θ ).

Proof. This is simply a restatement of Lemma 19.

In view of Proposition 39, there are two main contributions to ∂ψ
∂θ1
, namely

1. G(θ2)− φ(θ1, π);

2. G(θ2)−G(θ1).

We have already given conditions under which the first is strictly positive (in Propo-

sition 33). The second is strictly positive under the same conditions:

Proposition 40. Suppose that:

1. θ2 ∈
¡
θ , θ

¢
;

2. ψ(θ1) ≤ F ( θ );

3. Assumption A4 holds.

Then G(θ2)−G(θ1) > 0.

Proof. We break the proof down into the cases θ1 ∈
¡

1
1+π

θ , 1
1+π

θF
¢
and θ1 ∈£

1
1+π

θF ,
1
1+π

θ
¢
. In the first case, the proof parallels that of Lemma 21. We have

[θ1, θ2] ⊂
¡

1
1+π

θF , θF
¢ ⊂ (0, θM), and moreover θ2 > θ. Assumption A4 therefore

implies that G(θ2) > G(θ1). In the second case, Lemma 23 implies directly that that

G(θ2) > G(θ1).
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M. The Strictly Slack Case

In this section we focus on the set W of (θ1, π) such that

1. θ1 ∈
¡
0, θ

¢
,

2. π ∈ (0,∞) and

3. θ2 = (1 + π) θ1 > θ.

In other words, we do not impose the requirement that θ1 = τ 1(π) (i.e. that θ1 be

optimal for the given π), but we do require that the maximum-penalty constraint is

slack in the sense that no types are choosing to pay the penalty.

M.1. The formula for ∂ψ
∂π
. The formula for ∂ψ

∂π
is given by the following propo-

sition.

Proposition 41. Suppose that θ2 > θ. Then

∂ψ

∂π
(θ1, π) = 0.

Proof. As in the proof of Lemma 20, we have ψ(θ1, π) = χ(θ1) for θ1 ∈
¡

1
1+π

θ , θ
¢
,where

χ(θ1) =
1

θ − θ1

Z θ

θ1

G(θ) dθ.

Hence ψ is independent of π for such θ1.

M.2. The formula for ∂ψ
∂θ1
. The formula for ∂ψ

∂θ1
is given by the following propo-

sition.

Proposition 42. Suppose that θ2 > θ. Then

∂ψ

∂θ1
(θ1, π) =

χ(θ1)−G(θ1)

θ − θ1
.

Proof. As already noted, we have ψ(θ1, π) = χ(θ1) for θ1 ∈
¡

1
1+π

θ , θ
¢
. Moreover

χ0(θ1) =
χ(θ1)−G(θ1)

θ − θ1
,

as in the proof of Lemma 20.

36



Online Appendices for “Self Control and Commitment:
Can Decreasing the Liquidity of a Savings Account Increase Deposits?”

In view of Proposition 42, there is really only one contribution to ∂ψ
∂θ1
, namely

χ(θ1) − G(θ1). It is not possible to sign χ(θ1) − G(θ1) for all θ1, but it is possible

to sign it when θ1 = τ 1(π), and indeed much more generally when θ1 ∈
¡
0, θF

¢
. As

before, this is enough for the purpose of our comparative statics.

Proposition 43. Suppose that θ1 ∈
¡
0, θF

¢
. Then χ(θ1)−G(θ1) > 0.

Proof. This is simply a special case of Lemma 26.

N. The Intermediate Case

Up to now we have focussed on the comparative statics of τ 1. For example, we have

shown that if A4 is satisfied and ρ = 1 then: (i) τ 01 < 0 when τ 2(π) < θ; and (ii)

τ 01 = 0 when τ 2(π) > θ. However, this leaves open the question of what happens at

the transition between the two cases. For example, does τ 1 jump up when τ 2(π) = θ ?

Does it jump down? Or is there more than one value of π for which τ 2(π) = θ ?

In order to address these questions, we need to understand the comparative statics

of τ 2. These comparative statics are quite complex in the binding case. However,

they simplify as the borderline between the two cases is approached. Moreover they

are simpler still in the slack case.

N.1. Comparative Statics of τ 2 in the Weakly Binding Case. We begin

this section by looking at the comparative statics of τ 2 when the maximum-penalty

constraint is strictly binding (in the sense that τ 2(π) < θ). More precisely, we show

that τ 02(π) satisfies a simple linear equation. We then go on to check whether this

equation remains valid when the maximum-penalty constraint is only weakly binding

(in the sense that τ 2(π) ↑ θ ).

Proposition 44. Suppose that τ 2(π) < θ. Then

D(τ 1(π), π) τ
0
2(π) = N(τ 1(π), π), (30)

where

D(θ1, π) = (1 + π)
θ1 + β b

³
θ1
β

´
θ2 + β b

³
θ1
β

´ (G(θ2)− φ(θ1, π)) + (φ(θ1, π)−G(θ1))
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and

N(θ1, π) =

π (1 + π) ∂S
∂π
(θ2, π)

S (θ2, π)
(G(θ2)− φ(θ1, π))

+ (φ(θ1, π)−G(θ1)) +
π (1 + π)

S (θ2, π)

Z
(θ2,θ ]

∂S
∂π
(h;π) dG(h)

 θ1.

Proof. We have

τ 2(π) = (1 + π) τ 1(π)

and therefore

τ 02(π) = τ 1(π) + (1 + π) τ 01(π). (31)

Now,
∂ψ

∂θ1
(τ 1(π), π) τ

0
1(π) +

∂ψ

∂π
(τ 1(π), π) = 0.

Hence, multiplying (31) through by ∂ψ
∂θ1
(τ 1(π), π), we obtain

∂ψ

∂θ1
τ 02 =

∂ψ

∂θ1
τ 1 + (1 + π)

∂ψ

∂θ1
τ 01

=
∂ψ

∂θ1
τ 1 − (1 + π)

∂ψ

∂π
,

where we have suppressed the dependence of ∂ψ
∂θ1

and ∂ψ
∂π
on τ 1(π) and π, and the

dependence of τ 1 and τ 2 on π. We may therefore put

D(θ1, π) =
π θ1

S(θ2, θ )

∂ψ

∂θ1
(θ1, π)

and

N(θ1, π) =
π θ1

S(θ2, θ )

µ
∂ψ

∂θ1
(θ1, π) θ1 − (1 + π)

∂ψ

∂π
(θ1, π)

¶
.

Equation (30) now follows on applying the formulae for ∂ψ
∂π
(θ1, π) and

∂ψ
∂θ1
(θ1, π) given

in Propositions 31 and 39.

Equation (30) can be solved for τ 02(π) under the conditions of Proposition 33,

namely that: (i) τ 2(π) ∈
¡
θ , θ

¢
; (ii) ψ(τ 1(π)) ≤ F ( θ ); and (iii) Assumption A4

holds. This is not, however, enough for our current purposes: we need to make sure

that it can still be solved for τ 02(π) in the limiting case τ 2(π) ↑ θ. To this end, recall
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that

V =
©
(θ1, π) | θ1 ∈

¡
0, θ

¢
, π ∈ (0,∞) , θ2 < θ

ª
,

and put

∂V =
©
(θ1, π) | θ1 ∈

¡
0, θ

¢
, π ∈ (0,∞) , θ2 = θ

ª
.

Furthermore, for all (θ1, π) ∈ V ∪ ∂V , put

D(θ1, π) = (1 + π)
θ1 + β b

³
θ1
β

´
θ2 + β b

³
θ1
β

´ (GL(θ2)− φ(θ1, π))

+ (φ(θ1, π)−max {G(θ1), GL(θ1)})

and

D(θ1, π) = (1 + π)
θ1 + β b

³
θ1
β

´
θ2 + β b

³
θ1
β

´ (GL(θ2)− φ(θ1, π))

+ (φ(θ1, π)−min {G(θ1), GL(θ1)}) .

Then we have:

Lemma 45. Suppose that (eθ1, eπ) ∈ V → (θ1, π) ∈ ∂V . Then

D(θ1, π) ≤ lim infD(eθ1, eπ ) ≤ lim supD(eθ1, eπ ) ≤ D(θ1, π).

Proof. Note first that b and φ are both continuous. Hence b
³
θ1
β

´
→ b

³
θ1
β

´
and

φ(eθ1, eπ)→ φ(θ1, π). Next, put eθ2 = (1+π)eθ1 and θ2 = (1+π) θ1. Then eθ2 ↑ θ2, and
therefore G(eθ2)→ GL( θ2 ). Finally,

min {G(θ1), GL(θ1)} ≤ lim infG(eθ1)
≤ lim supG(eθ1)
≤ max {G(θ1), GL(θ1)} .

The result follows.

39



Online Appendices for “Self Control and Commitment:
Can Decreasing the Liquidity of a Savings Account Increase Deposits?”

The next step is to signD. This cannot be done everywhere on V ∪∂V . But it can
be done when θ2 = θ and θ1 = τ 1(π). Indeed, it is enough to require that θ2 ∈

¡
θF , θ

¤
(i.e. we do not actually have to be on the boundary) and that ψ(θ1, π) ≤ F ( θ ) (i.e.

we do not actually have to be at an optimum). We begin with a lemma.

Lemma 46. Suppose that:

1. θ2 ∈
¡
θF , θ

¤
;

2. ψ(θ1) ≤ F ( θ ).

Then GL(θ2) > G(θ1) ≥ GL(θ1).

Proof. The proof is similar to that of Lemma 23. Note first that

GL(θ2) ≥ F ( θ )

(with strict inequality if θ2 < θ )

≥ ψ(θ1) = Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1)

(by assumption, by definition of ψ, because θ1 < θ2 ≤ θ and by construction of Ψ

respectively). Second, Lemma 9 tells us that ψ > F ( θ ) on
£
θF , θ

¢
. But we have

ψ(θ1) ≤ F ( θ ). Hence θ1 < θF and therefore G0 ≥ 0 at θ1 ∈
¡
0, θF

¢ ⊂ (0, θM). That
is, G(θ1)−GL(θ1) = ∆G(θ1) ≥ 0.
We can now sign D.

Proposition 47. Suppose that:

1. θ2 ∈
¡
θF , θ

¤
;

2. ψ(θ1) ≤ F ( θ ).

Then D(θ1, π) > 0.

Proof. Two things follow from Lemma 46. First, G(θ1) ≥ GL(θ1). Hence the

formula for D(θ1, π) simplifies to

D(θ1, π) = (1 + π)
θ1 + β b

³
θ1
β

´
θ + β b

³
θ1
β

´ (GL(θ2)− φ(θ1, π)) + (φ(θ1, π)−G(θ1)) .
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In particular, D(θ1, π) is a strictly positive linear combination of the two terms

GL(θ2) − φ(θ1, π) and φ(θ1, π) − G(θ1). Second, GL(θ2) − G(θ1) > 0. Hence the

sum of the two terms GL(θ2) − φ(θ1, π) and φ(θ1, π) − G(θ1) is strictly positive. It

therefore suffices to show that each of these two terms is non-negative. We have

GL(θ2) ≥ F ( θ ) ≥ ψ(θ1) = Ψ( θ ; θ1)

(as in the proof of Lemma 46)

≥ Ψ(θ2; θ1) > Ψ(θ1; θ1)

(since Ψ0 ≥ 0 on ¡θ1, θF¢ (by Proposition 17) and Ψ0 > 0 on
£
θF , θ

¢
(by Proposition

18))

= G(θ1)

(again as in the proof of Lemma 46). In particular, since Ψ(θ2; θ1) = φ(θ1, π), we

have GL(θ2) ≥ φ(θ1, π) and φ(θ1, π) > G(θ1).

Since D > 0, finding the sign of N and finding the sign of τ 02(π) amount to the

same thing. Note first that

τ 2(π) = (1 + π) τ 1(π)

and hence

τ 02(π) = (1 + π) τ 01(π) + τ 1(π).

We therefore face a tension. On the one hand, we are mainly interested in the

case in which τ 01(π) < 0. For our purposes, then, the first contribution to τ 02(π)

(namely (1+ π) τ 01(π)) is negative. However, the second contribution (namely τ 1(π))

is necessarily positive. The net effect is therefore ambiguous. Worse still, what we

really need to show for the purposes of comparative statics is that τ 02(π) > 0 (so that

the curve (τ 1(π), π) crosses the boundary θ2 = θ in a simple way). This is directly at

odds with our interest in the case in which τ 01(π) < 0.

Fortunately, the problem of signing τ 02(π) at the boundary is much simpler than

the problem of signing τ 02(π) in V . With this end in mind, for all (θ1, π) ∈ ∂V , put

N(θ1, π) = (φ(θ1, π)−max {G(θ1), GL(θ1)}) θ1
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and

N(θ1, π) = (φ(θ1, π)−min {G(θ1), GL(θ1)}) θ1.
Then we have the following lemma.

Lemma 48. Suppose that (eθ1, eπ ) ∈ V → (θ1, π) ∈ ∂V . Then

N(θ1, π) ≤ lim infN(eθ1, eπ ) ≤ lim supN(eθ1, eπ ) ≤ N(θ1, π).

Proof. The proof is similar to that of Lemma 45. Put eθ2 = (1+π)eθ1 and θ2 = (1+
π) θ1. Then eθ2 ↑ θ2 = θ, and therefore ∂S

∂π
(eθ2, π)→ 0 and

R
(θ2,θ ]

∂S
∂π
(h;π) dG(h)→ 0.

Furthermore φ(eθ1, eπ)→ φ(θ1, π) and

min {G(θ1), GL(θ1)} ≤ lim infG(eθ1)
≤ lim supG(eθ1)
≤ max {G(θ1), GL(θ1)} .

Passing to the limit in the formula given for N in the statement of Proposition 44,

we therefore obtain the required result.

Combining Lemma 48 with the earlier Lemma 46, we obtain:

Proposition 49. Suppose that:

1. θ2 = θ;

2. ψ(θ1) ≤ F ( θ ).

Then N(θ1, π) > 0.

Proof. The proof is similar to that of Proposition 47. First, because ψ(θ1) ≤ F ( θ )

and therefore θ1 < θF , the formula for N(θ1, π) simplifies to

N(θ1, π) = (φ(θ1, π)−G(θ1)) θ1.

Second, we have

Ψ( θ ; θ1) > Ψ(θ1; θ1) = G(θ1).

It remains only to note that, because θ2 = θ, we have φ(θ1, π) = Ψ( θ ; θ1).
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Combining Propositions 47 and 49, we see that τ 02(π) > 0 on ∂V . In other words,

whatever the behaviour of the curve (τ 1(π), π) in V , it points out of V at ∂V . I.e.

it can exit, but not enter, V at ∂V . In particular, there exists π1 ∈ (0,∞) such that
τ 2(π) < θ iff π ∈ [0, π1).

N.2. Comparative Statics of τ 2 in the Weakly Slack Case. We begin this

section by looking at the comparative statics of τ 2 when the maximum-penalty con-

straint is strictly slack (in the sense that τ 2(π) > θ). More precisely, we show that

τ 02(π) satisfies a simple linear equation. We then go on to check whether this equa-

tion remains valid when the maximum-penalty constraint is only weakly slack (in the

sense that τ 2(π) ↓ θ ). Our first proposition is analogous to Proposition 44.
Proposition 50. Suppose that τ 2(π) > θ. Then

D(τ 1(π), π) τ
0
2(π) = N(τ 1(π), π), (32)

where

D(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1

and

N(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1
θ1.

Notice that, if χ(θ1) −G(θ1) > 0, then we can divide through by D(τ 1(π), π) to

conclude that τ 02(π) = θ1. Furthermore χ(θ1)−G(θ1) > 0 if θ1 = τ 1(π), and indeed

much more generally if θ1 ∈
¡
0, θF

¢
. Cf. Proposition 43. But it does not hold for all

(θ1, π) ∈W .

Proof. As in the proof of Proposition 44, we have

∂ψ

∂θ1
τ 02 =

∂ψ

∂θ1
τ 1 − (1 + π)

∂ψ

∂π
.

We may therefore put

D(θ1, π) =
∂ψ

∂θ1
(θ1, π)

and

N(θ1, π) =
∂ψ

∂θ1
(θ1, π) θ1 − (1 + π)

∂ψ

∂π
(θ1, π).

Equation (32) now follows on applying the formulae for ∂ψ
∂π
(θ1, π) and

∂ψ
∂θ1
(θ1, π) given

in Propositions 41 and 42.
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The next step is to ensure that equation (32) can still be solved for τ 02(π) in the

limiting case τ 2(π) ↓ θ. To this end, recall that

W =
©
(θ1, π) | θ1 ∈

¡
0, θ

¢
, π ∈ (0,∞) , θ2 > θ

ª
,

and put

∂W =
©
(θ1, π) | θ1 ∈

¡
0, θ

¢
, π ∈ (0,∞) , θ2 = θ

ª
.

Furthermore, for all (θ1, π) ∈W ∪ ∂W , put

D(θ1, π) =
χ(θ1)−max {G(θ1), GL(θ1)}

θ − θ1
,

D(θ1, π) =
χ(θ1)−min {G(θ1), GL(θ1)}

θ − θ1

and

N(θ1, π) =
χ(θ1)−max {G(θ1), GL(θ1)}

θ − θ1
θ1,

N(θ1, π) =
χ(θ1)−min {G(θ1), GL(θ1)}

θ − θ1
θ1.

Then we have:

Lemma 51. Suppose that (eθ1, eπ) ∈W → (θ1, π) ∈ ∂W . Then

D(θ1, π) ≤ lim infD(eθ1, eπ ) ≤ lim supD(eθ1, eπ ) ≤ D(θ1, π)

and

N(θ1, π) ≤ lim infN(eθ1, eπ ) ≤ lim supN(eθ1, eπ ) ≤ N(θ1, π).

Proof. Note first that χ is continuous. Hence χ(eθ1)→ χ(θ1). On the other hand,

as in the proof of Lemma 45,

min {G(θ1), GL(θ1)} ≤ lim infG(eθ1)
≤ lim supG(eθ1)
≤ max {G(θ1), GL(θ1)} .

The result follows.
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The next step is to signD. This cannot be done everywhere onW∪∂W . But it can
be done when θ2 = θ and θ1 = τ 1(π). Indeed, it is enough to require that θ2 ∈

£
θ,∞¢

(i.e. we do not actually have to be on the boundary) and that ψ(θ1, π) ≤ F ( θ ) (i.e.

we do not actually have to be at an optimum). We begin with a lemma.

Lemma 52. Suppose that:

1. θ2 ∈
£
θ,∞¢;

2. ψ(θ1) ≤ F ( θ ).

Then G(θ1) ≥ GL(θ1).

Proof. The proof is identical to the relevant part of that of Lemma 46. Since

ψ(θ1) ≤ F ( θ ), we must have θ1 < θF . Hence G0 ≥ 0 at θ1 ∈
¡
0, θF

¢ ⊂ (0, θM).
Proposition 53. Suppose that:

1. θ2 ∈
£
θ,∞¢;

2. ψ(θ1) ≤ F ( θ ).

Then D(θ1, π), N(θ1, π) > 0.

Proof. Note first that, in view of Lemma 52, we have

D(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1

and

N(θ1, π) =
χ(θ1)−G(θ1)

θ − θ1
θ1.

Second, since ψ(θ1) ≤ F ( θ ), we have θ1 < θF . Finally, Proposition 43 tells us that

χ(θ1)−G(θ1) > 0 for θ1 ∈
¡
0, θF

¢
.

It follows from Proposition 53 that τ 02(π) > 0 on ∂W . In other words, whatever

the behaviour of the curve (τ 1(π), π) inW , it points intoW at ∂W . I.e. it can enter,

but not exit, W at ∂W . In particular, there exists π2 ∈ (0,∞) such that τ 2(π) > θ

iff π ∈ (π2,∞).
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N.3. Comparative Statics of τ 2 in the Remaining Case. At this point we

have established that there exist 0 < π1 ≤ π2 <∞ such that τ 2(π) < θ iff π ∈ [0, π1)
and τ 2(π) > θ iff π ∈ (π2,∞).14 The remaining question is therefore whether it is
possible that π1 < π2, in other words that there is a non-trivial interval (π1, π2) over

which τ 2(π) = θ.

Suppose for a contradiction that there is such an interval. Then, over this interval,

we must have both

ψ(τ 1(π), π) = F ( θ ) (33)

(because τ 1(π) is the optimal θ1) and

τ 2(π) = θ. (34)

Hence

F ( θ ) = ψ(τ 1(π), π) = Ψ( θ ; τ 1(π), π) = Ψ(τ 2(π); τ 1(π), π)

(by equation (33), by definition of ψ and by equation (34))

= φ(τ 1(π);π) =
1

τ 2(π)− τ 1(π)

Z τ2(π)

τ1(π)

G(θ) dθ =
1

θ − τ 1(π)

Z θ

τ1(π)

G(θ) dθ

(by construction ofΨ, by definition of φ, by equation (34) again). Multiplying through

by θ − τ 1(π), we therefore obtainZ θ

τ1(π)

G(θ) dθ = (θ − τ 1(π))F (θ).

Differentiating with respect to π, we then obtain

−G(τ 1(π)) τ 01(π) = −τ 01(π)F (θ)

or

(G(τ 1(π))− F (θ)) τ 01(π) = 0.

14That π1 ≤ π2 follows at once from the fact that we cannot have τ2(π) < θ and τ2(π) > θ
simultaneously.
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But equation (34) implies that (1 + π) τ 1(π) = θ and therefore

τ 01(π) = −
θ1
1 + π

6= 0.

We conclude that G(τ 1(π))− F (θ) = 0. This, however, is impossible. For we have

G(τ 1(π)) = Ψ(τ 1(π); τ 1(π), π) ≤ Ψ( θF ; τ 1(π), π) < Ψ( θ ; τ 1(π), π)

(by construction of Ψ, by Proposition 17 and by Proposition 18)

= ψ(τ 1(π), π) = F (θ)

(as above). The only possible conclusion is therefore that π1 = π2.

O. Comparative Statics without A4

We divide our discussion into the same three cases that we considered in Section L.1,

namely:

1. ρ < 1 and G0 ≤ 0 on ( θ ,∞ );

2. ρ = 1;

3. ρ > 1 and G0 ≥ 0 on ¡ 0, θ ¢.
Of these, the first is by far the simplest, because if G0 ≤ 0 on ( θ ,∞ ) then A4 holds.

Proposition 54. Suppose that ρ < 1 and G0 ≤ 0 on ( θ ,∞ ) (i.e. θM = θ ). Then

τ = τ for all π ∈ ( 0,∞ ). Furthermore there exists π1 ∈ ( 0,∞ ) such that: the
maximum-penalty constraint is strictly binding for all π ∈ ( 0, π1); and the maximum-
penalty constraint is strictly slack for all π ∈ (π1,∞ ). Finally:

1. τ = τ is strictly decreasing on ( 0, π1); and

2. τ = τ is constant on (π1,∞ ). ¥

In other words, for all values of the maximum penalty π ∈ [0,∞), there is a
unique optimum within our one-parameter family. Furthermore there exists a critical

level π1 of π. Below π1, the maximum-penalty constraint is strictly binding and the

optimal savings target is strictly increasing in π. Above π1, the maximum-penalty

constraint is strictly slack and the optimal savings target is independent of π.

47



Online Appendices for “Self Control and Commitment:
Can Decreasing the Liquidity of a Savings Account Increase Deposits?”

Proposition 55. Suppose that ρ = 1. Then there exists π0 ∈ [0,∞) such that:
τ < τ for all π ∈ ( 0, π0); and τ = τ for all π ∈ (π0,∞). Furthermore there exists
π1 ∈ (π0,∞) such that: the maximum-penalty constraint is strictly binding for all
π ∈ ( 0, π1); and the maximum-penalty constraint is strictly slack for all π ∈ (π1,∞ ).
Finally:

1. τ is constant, and τ is strictly decreasing, on (0, π0);

2. τ = τ is strictly decreasing on (π0, π1); and

3. τ = τ is constant on (π1,∞). ¥

In other words, there are two critical levels of π, namely π0 and π1. Below π0, there

is a continuum of optima from within our one-parameter family; and, above π0, there

is a unique optimum from within our one-parameter family. Below π1, the maximum-

penalty constraint is strictly binding; and, above π1, the maximum-penalty constraint

is strictly slack. Furthermore, below π0: the smallest of the possible optimal savings

targets is strictly increasing in π; and the largest of the possible optimal savings

targets is independent of π. Between π0 and π1: there is only one optimal savings

target, and this is strictly increasing in π. And, above π1: there is again only one

optimal savings target, and this is independent of π.

Proposition 56. Suppose that ρ > 1 and G0 ≥ 0 on
¡
0, θ
¢
(i.e. θM = θ). Then

there there exists π1 ∈ (0,∞) such that: the maximum-penalty constraint is strictly
binding for all π ∈ ( 0, π1); and the maximum-penalty constraint is strictly slack for
all π ∈ (π1,∞ ). Furthermore:

1. τ and τ are both strictly decreasing on (0, π1);

2. τ = τ is constant on (π1,∞). ¥

In other words, there exists a critical level π1 of π. Below π1: the maximum-

penalty constraint is strictly binding; and the set of optimal savings targets is strictly

increasing in π. Above π1: the maximum-penalty constraint is strictly slack; and the

optimal savings target is independent of π.

Remark 57. It is interesting to compare the levels of uniqueness obtained in Propo-
sitions 54, 55 and 56. When ρ < 1, we have uniqueness for all π ∈ (0,∞). When
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ρ = 1, a limited form of non-uniqueness can develop: there exists π0 ∈ [0, π1) such
that there is non-uniqueness on (0, π0) and uniqueness on (π0,∞). And, when ρ > 1,
non-uniqueness takes the form that one might expect in a convex optimization prob-

lem. However, we do at least get strict monotonicity on the whole of (0, π1).

P. Existence of a Full Optimum

Suppose that self 0 is required to pick a B satisfying Constraints 1 and 2. Then the

utility curve (u,w) that results will satisfy the following three conditions:

I (u,w) is interior, in the sense that u,w > U(0) on Θ.

M (u,w) is monotonic, in the sense that u is non-decreasing and w is non-increasing.

DE (u,w) satisfies the differential equation θ du+ β dw = 0.

If B is also convex, then (u,w) will also satisfy:

C (u,w) is continuous.

Now, the set Ω with which we have worked so far consists of utility curves (u,w)

that satisfy I, BV, DE and C, where BV is the condition:

BV (u,w) is of bounded variation.

Since BV is weaker than M, this means that Ω contains all the utility curves that can

result from convex B, and more besides. We have therefore solved a relaxed version

of the convex-B problem. Since the solution of this relaxed problem is feasible in the

convex-B problem, we have therefore also solved the convex-B problem. The purpose

of the present section is to solve the general problem in which B is not required to

be convex.

Suppose accordingly that Ω consists of all (u,w) ∈ BV(Θ, ran(U))2 such that
θ du + β dw = 0. In other words, let Ω consist of utility curves (u,w) that satisfy I,

BV, DE but not C. Put X = BV(Θ,R)2, Ξ = BV(Θ, ran(U))2 and Z = BV(Θ,R).
Then the objective function M and the constraint mappings G1 and G2 continue to

make sense. The analysis of Luenberger (1969) therefore shows that x0 ∈ Ω solves

the problem
maximize M(x)

subject to


x ∈ Ω

G1(x) ≥ 0
G2(x) ≥ 0
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iff there exist λ1, λ2 ∈ Z∗ such that:

1. L(x0, λ1, λ2) ≥ L(x, λ1, λ2) for all x ∈ Ω, where

L(x, λ1, λ2) =M(x) + hG1(x), λ1i+ hG2(x), λ2i ;

2. G1(x) ≥ 0, λ1 ≥ 0 and hG1(x), λ1i = 0;

3. G2(x) ≥ 0, λ2 ≥ 0 and hG2(x), λ2i = 0.

In other words, there exists multipliers λ1 and λ2 such that: (1) x0 maximizes

L( · , λ1, λ2) over Ω; (2) complementary slackness holds for the first constraint; and
(3) complementary slackness holds for the second constraint.

At this point, however, we encounter an obstacle. While the dual space C(Θ,R)∗
of C(Θ,R) has a convenient representation as the space M(Θ,R), the dual space
BV(Θ,R)∗ of BV(Θ,R) does not have a similarly convenient representation. This
makes it difficult to use the necessity part of the Lagrangean characterization of the

optimum. We can, however, still hope to use the sufficiency part.

The idea here is to note that the elements of M(Θ,R) can be used to induce
continuous linear functionals on BV(Θ,R). For example, µ ∈M(Θ,R) induces µR ∈
BV(Θ,R)∗ via the formula

hz, µRi =
Z

zR dµ,

where zR denotes the right-continuous version of z. However, in pursuing this idea,

it is important to note that µ also induces µL ∈ BV(Θ,R)∗ via the formula

hz, µLi =
Z

zL dµ,

where zL denotes the left-continuous version of z. In other words, there is no canon-

ical association between elements of M(Θ,R) and continuous linear functionals on
BV(Θ,R).
Our plan is therefore to start from a θ1 such that Ψ

¡
θ ; θ1

¢
= F ( θ ), in the hope

that Ψ( · ; θ1) can be used to generate multipliers that can be used in the sufficiency
part of the Lagrangean characterization of an optimum. Indeed, suppose that we are

given such a θ1. Then, bearing in mind that ∆Ψ(θ2; θ1) = 0, we may put deΛ1 =
dΨ( · ; θ1) on [ θ, θ2], dΛ2 = dΨ( · ; θ1) on

£
θ2, θ

¤
and dΛ1 =

1
K0(w0)

deΛ1. Furthermore,
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if we let λ1 and λ2 be the continuous linear functionals induced on BV(Θ,R) by dΛ1
and dΛ2 using integration with respect to the right-continuous versions of functions,

then we have

L(x, λ1, λ2) =

Z ³
θ u(θ) + w(θ)

´
dF (θ)

+

Z ³
y − C(u(θ))−K(w(θ))

´
dΛ1(θ)

+

Z µ
b
³

θ
(1+π)β

´
u(θ)− 1

ρ
a
³

θ
(1+π)β

´
− w(θ)

¶
dΛ2(θ)

for all x ∈ X. Our objective is then to show that the utility curve x0 = (u0, w0)

associated with θ1 maximizes L( · , λ1, λ2).
It suffices to show that, for all x1 ∈ Ω, the directional derivative ∇xL(x0, λ1, λ2)

of L at x0 in the direction x = x1 − x0 is non-positive. As in Section F, we have

∇xL(x0, λ1, λ2) =

Z ³
θ u+ w

´
dF −

Z ³
C 0(u0)u+K 0(w0)w

´
dΛ1

+

Z ³
b
³

θ
(1+π)β

´
u− w

´
dΛ2

=

Z ³
θ u+ w

´
dF −

Z ³
C0(u0)
K0(w0)

u+ w
´
deΛ1

+

Z ³
b
³

θ
(1+π)β

´
u− w

´
dΛ2.

Furthermore, notwithstanding the fact that we are now working in a more general

context, we can eliminate the terms
R
w dF ,

R
w deΛ1 and R w dΛ2 using integration

by parts.

Indeed, the general formula for integration by parts tells us thatZ
[ θ ,θ ]

w(θ) dF (θ) = [wF ]θθ− −
Z
[ θ ,θ ]

F (θ) dw(θ) +
P

θ∈[ θ ,θ ]
∆w(θ)∆F (θ),

where

[wF ]θθ− = w( θ )F ( θ )− w( θ−)F ( θ−).
We therefore have Z

w dF = [wF ]θθ− −
Z

F dw +
P

∆w∆F
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(where we have suppressed the dependence on θ and where the domains of all inter-

grals and sums are understood to be the whole of
£
θ , θ

¤
)

= w( θ )F ( θ ) +

Z
F

θ

β
du−P θ

β
∆u∆F

(because F ( θ−) = 0 and dw = − θ
β
du)

= w( θ )F ( θ ) +
1

β

Z
F θ du− 1

β

P
θ∆u∆F.

Moreover Z
F θ du = [(F θ)u]θθ− −

Z
ud(F θ) +

P
∆(F θ)∆u

(applying the general formula for integration by parts to
R
F θ du)

= θ u( θ )F ( θ )−
Z

u (θ dF + F dθ) +
P

θ∆F ∆u

(since F ( θ−) = 0, d(F θ) = θ dF + F dθ and ∆(F θ) = θ∆F ). Overall, then,Z
w dF =

µ
θ

β
u( θ ) + w( θ )

¶
F ( θ )− 1

β

Z
u (θ dF + F dθ).

By the same token, and bearing in mind that we did not use the fact that ∆F = 0

in the derivation of the previous paragraph, we haveZ
w deΛ1 = µ θ

β
u( θ ) + w( θ )

¶ eΛ1( θ )− 1
β

Z
u (θ deΛ1 + eΛ1 dθ)

and Z
w dΛ2 =

µ
θ

β
u( θ ) + w( θ )

¶
Λ2( θ )− 1

β

Z
u (θ dΛ2 + Λ2 dθ).

We therefore have

∇xL(x0, λ1, λ2) =

Z
udu∗ + w( θ ) r∗
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where, as in section F above,

du∗ = − 1
β

³
(1− β) θ dF + F dθ

´
+
1

β

³³
θ − β C0(u0)

K0(w0)

´
deΛ1 + eΛ1 dθ´

+
1

β

³³
θ + β b

³
θ

(1+π)β

´´
dΛ2 + Λ2 dθ

´
+

θ

β

³
F ( θ )− eΛ1( θ )− Λ2( θ )

´
dI,

r∗ = F ( θ )− eΛ1( θ )− Λ2( θ )

and I is the distribution function of the unit mass at θ. Finally, by construction ofeΛ1 and Λ2, we have u∗ = 0 and r∗ = 0. So in fact ∇xL(x0, λ1, λ2) = 0. In particular,

the utility curve x0 = (u0, w0) associated with θ1 does indeed maximize L( · , λ1, λ2).

Remark 58. Great care is needed in choosing the space Z. One possible choice is
C(Θ,R), the space of all continuous functions on Θ endowed with the sup norm. This
choice has the advantage that there is a convenient representation for Z∗. However, it

also requires that Ω ⊂ C(Θ,R), and this is not an economically reasonable restriction.
Another possible choice is B(Θ,R), the space of all bounded functions on Θ endowed

with the sup norm. This choice has the advantage that it includes all economically

relevant utility curves. Unfortunately, it leads to a different problem: the measures

dΛ1 and dΛ2 associated with Ψ( · ; θ1) do not induce continuous linear functionals on
B(Θ,R), since functions in B(Θ,R) are not in general measurable. The results of
Luenberger (1969) do not therefore apply. Our solution to this double problem is to

use BV(Θ,R). This space is big enough to include all economically relevant utility
curves, but small enough that dΛ1 and dΛ2 can be used to induce continuous linear

functionals on it.

Q. Distributions

Q.1. Beta Distribution. The density of the generalization of the Beta that we

consider is proportional to

(x− a)ζ−1(b− x)η−1

on the interval (a, b), where 0 < a < b and ζ, η > 0. It is unbounded at a if ζ < 1,

in which case we require that θ ∈ (a, b) in order to ensure that A1 is satisfied, and
unbounded at b if η < 1, in which case we require that θ ∈ (a, b) in order to ensure
that A1 is satisfied.

There are then four main cases. Three of the cases are easy to describe:
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Case 1 if ζ > 1 and η ≥ 1 then A3 is satisfied for all choices of θ, θ ∈ (a, b);

Case 2 if ζ > 1 and η < 1 then A3 is again satisfied for all choices of θ, θ ∈ (a, b),
albeit for somewhat different reasons;

Case 4 if ζ < 1 and η < 1, then A3 is violated for some choices of θ, θ ∈ (a, b).
Case 3 is more involved. If ζ < 1 and η ≥ 1, then A3 is satisfied for all choices of

θ, θ ∈ (a, b) iff ¡√
1− ζ +

√
η − 1pa

b

¢2
1− a

b

≥ 1 + 1

1− β
. (35)

As this inequality makes clear, A3 is more likely to be satisfied if: either (i) ζ is close

to 0 (i.e. the spike at a is very pronounced); or (ii) η is large (i.e. the density decays

very quickly towards b); or (iii) a
b
is close to 1 (i.e. the density is concentrated in a

narrow band).15 It is also worth noting that, as a
b
→ 0, the left-hand side of (35)

converges to 1 − ζ < 1. Hence A3 is violated for some choices of θ, θ ∈ (a, b) when
ζ < 1 and a

b
is small. This is in striking contrast with the standard case studied in

both Rice and Hogg et al. In that case A3 is satisfied for all θ, θ ∈ (a, b) when ζ < 1

and a
b
= 0.

Note finally that the right-hand side of (35) is strictly increasing in β. Hence, if

we fix a distribution for which ζ < 1 and η ≥ 1, then the conclusion is that A3 will be
satisfied provided that β is far enough below 1. I.e. A3 is more likely to be satisfied

when the decision maker is more time-inconsistent.

Q.2. Cauchy Distribution. The density of the general form of the Cauchy dis-

tribution is proportional to Ã
1 +

µ
x− µ

σ

¶2!−1
on R, where µ ∈ R is a location parameter and σ > 0 is a scale parameter. This

distribution satisfies A3 for all θ, θ ∈ (0,∞) iff

µ

σ
≤
s
1− (1− β)2

(1− β)2
. (36)

In other words, taking β as given, A3 is satisfied iff the distribution is not located

too far to the right. If (36) does not hold then, for some choices of θ, θ ∈ (0,∞), G is
15For the purposes of the present discussion, ζ ∈ (0, 1), η ∈ [1,∞) and a

b ∈ (0, 1).
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first increasing (at θ), then decreasing, then increasing again, then finally decreasing

again (at θ).

We can also make 1−β the subject of the inequality (36). Doing so, we find that

A3 is satisfied for all θ, θ ∈ (0,∞) iff

1− β ≤
µ
1 +

µ2

σ2

¶−1
2

.

In other words, taking the parameters µ and σ of the Cauchy distribution as given,

A3 is satisfied iff β is sufficiently close to 1. I.e. A3 is more likely to be satisfied when

the decision maker is less time-inconsistent.

Q.3. Log-Gamma Distribution. The density of the Log-Gamma distribution

is proportional to

x−
η+1
η (log(x))ζ−1

on (1,∞), where ζ, η > 0. It is unbounded at 1 if ζ < 1, in which case we require

that θ > 1 in order to ensure that A1 is satisfied. It violates A3 for some choices of

θ, θ ∈ (1,∞) iff ζ < 1 and η > 1−β. In other words, taking β as given, A3 is violated
iff there is a singularity at 1 and the rate of decay at ∞ is sufficiently slow.

Note finally that, if we fix a distribution for which ζ < 1, then the conclusion is

that A3 will be satisfied provided that β is far enough below 1. I.e. A3 is more likely

to be satisfied when the decision maker is more time-inconsistent.

Q.4. Pareto Distribution. The density of the Pareto type II distribution is

proportional to µ
1 +

x− µ

σ

¶−ζ−1
on (µ,∞), where µ ∈ R is a location parameter, σ > 0 is a scale parameter and ζ > 0

is a shape parameter. It violates A3 for some choices of θ, θ ∈ (µ,∞) iff

ζ <
1

1− β
(37)

and
µ

σ
>

1

ζ + 1

µ
1 +

1

1− β

¶
. (38)
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In other words, it violates A3 iff its right-hand tail is sufficiently fat and, taking the

fatness of the tail as given, it is located sufficiently far to the right. In particular, if
µ
σ
≤ 1, then the Pareto type II distribution satisfies A3 for all θ, θ ∈ (µ,∞). For in

that case: either (i) ζ ≥ 1
1−β and therefore (37) is violated; or (ii) ζ <

1
1−β , in which

case 1
ζ+1

³
1 + 1

1−β
´
> 1

ζ+1
(1 + ζ) = 1 ≥ µ

σ
and therefore (38) is violated.

We can also make 1− β the subject of these inequalities. Doing so, we find that

A3 is violated for some θ, θ ∈ (µ,∞) iff³µ
σ
(ζ + 1)− 1

´−1
< 1− β < ζ−1.

In particular, if µ
σ
> 1 and ζ > 1 (so that

¡
µ
σ
(ζ + 1)− 1¢−1 < ζ−1 < 1), then A3 is

satisfied iff β is either close enough to 1 or far enough below 1.
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