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Causal Effectsin Non-Experimental Studies:
Re-Evaluating the Evaluation of Training Programs



Abstract

The need to use randomized experiments in the context of manpower training programs, and in
analyzing causal effects more generally, has been a subject of much debate. Lalonde (1986)
considers experimental data from the National Supported Work (NSW) Demonstration and non-
experimental comparison groups drawn fromthe CPSand PS D, and argues that econometric
methods fail to replicate the benchmark experimental treatment effect. This paper applies
propensity score methods, which have been developed in the statistics literature, to Lalonde’'s
dataset. In contrast with Lalonde' s findings, using propensity score methods, we are able closely
to replicate the experimental training effect. The methods succeed because they are able flexibly
to control for the wide range of observable differences between the (experimental) treatment

group and the (non-experimental) comparison group.



1. Introduction

An important question when andyzing causal effects in non-experimenta studies is how well techniques
of causd inference perform reative to experimenta evauations. For example, how accurately can a
researcher hope to estimate the effect of a manpower training program on earnings in an observationd
sudy? The question is not a new one! The need to use the dasscd datistical methodology of
randomized experiments in economic gpplications such as manpower training programs is addressed by
Ashenfdter (1978), Ashenfelter and Card (1985), Burtless and Orr (1986) and nore recently by
Burtless (1995). Laonde (1986) is the first study to examine the standard econometric procedures
used to evaduate the effect of training programs on earnings. He examines a randomized experiment (the
Nationad Supported Work Demonstration, NSW) from which he obtains an unbiased estimate of the
training effect, and then compares the experimentd result to those obtained from a range of parametric
sdlection modes (estimated using least squares regressons, insrumenta variables, and the Heckman
[1979] two-step procedure) applied to the NSW observations that received training and a set of
comparison observations congtructed from population survey data sets (CPS and PSID).? The
concluson in Laonde (1986), which has been very influentid in labor economics and the evaduation of
socid programs (see Katz [1992]), is that this array of estimators falls robustly to replicate the

experimentally determined results.

! The importance of classical experiments in explaining causal relations in econometrics goes beyond the case of
training programs used here as one possible application. See Cox (1992), Leamer (1978), and Pratt and Schlaifer
(1988) for various perspectives on the role of randomization in economic analysis.

2\We use the term control to refer to units that did not receive treatment; thisincludes experimental units randomized
out of treatment and non-experimental comparison units.



In this paper, we apply methods for causal inference developed in the Statistics literature that
rely on the assumption that conditiond on covariates sdection is ignorable -- aso referred to as
selection on observables (Rubin [1974, 1977, 1978], Rosenbaum and Rubin [19834], and reviewed in
Heckman and Robb [1985] and Holland [1986]).2 We re-etimate the trestment effect in Laonde's
non-experimental dataset and present a range of estimators which employ the propensity score method
(Rosenbaum and Rubin [19834)]), successfully and robustly replicating the experimenta treatment effect.
We show that our methods succeed, where those consdered by Laonde fail, precisely because they
control fully for observable differences between the NSW treated units and the CPS and PSID
controls. We dso demondrate the importance of usng a full set of pre-treatment covariates and
alowing for a heterogeneous treatment effect.

There have been many responses to Laonde's conclusions. Important among these is Heckman
and Hotz (1989) who emphasize the importance of using appropriate specification tests to select an
estimator. Other rdated studies include Card and Sullivan [1988] who examine the effect of training on
employment; Heckman et d., [1995] who estimate the effect of the JTPA training program on earnings,
and Manski et d., [1992] who examine the impact of family structure on school enrollment.

It is clear that selection on obsarvables is a srong assumption, requiring a sufficiently complete
set of pre-treatment covariates. However, our view is that before taking recourse to assumptions on
functiond forms and digtributions, there is much merit in exploiting fully the information contained in the
variables that are observed. In settings where the selection-on observables assumption is not adequate,

the techniques described in the paper should still be seen as an important and practica complement to

% The case of selection on observable characteristics in the econometrics literature was considered first by
Goldberger (1972a) and further devel oped in Barnow, Cain, and Goldberger (1980).



other econometric methods such as ingrumenta variables, that depend on wel specified excluson
regrictions (e.g., Angrist [1990], Angrist, Imbens, and Rubin [1996], and Imbens and Angrist [1994]),
and assumptions on the distribution of unobserved characteristics (Heckman [1979)]).

The paper is organized as follows. Section 2 reviews Ladonde's results, outlining the
econometric framework on selection bias and replicating his results.  Section 3 identifies the trestment
effect under the potential outcomes causal model, and Section 4 discusses estimation procedures for the
treatment effect. In Section 5, we implement the gpproach of Sections 3 and 4 for Laonde' s dataset,

and in Section 6, we discuss the sengtivity of the results to the methodology. Section 7 concludes the

paper.

2. Lalonde sResults
2.1 The Econometric Framework
The modeds consdered in Laonde (1986) fit into the following sandard model in the econometrics
literature (e.g., Maddaa[1983] and Heckman [1990]); there are two outcome equations:

Y, =a,+Xm+u, for participants

Y, =a,+ X,;m +u, for non- participants,
where Yi; and Y, are the outcome of interest for participants and non-participants respectively, which
are linear functions of a vector of observable characterigics X and some error term. A participation

decison rule determines whether individud i participates in the program (T;=1) or not (T;=0):



The error terms are distributed as:

where a range of specific assumptions can be made about the elements of the covariance matrix, S. A

leading case in the literature is the case of a congtant additive trestment effect:

where d is the effect due to treetment. The equation for the observed outcome variable can then be
written as:*

¥ =b+dT, +X,b, +e, ®

The selection-on-observable- characteristics assumption is expressed as.
Ti Lei | ><i

(where - refers to independence). Under the above assumptions, equation (1) can be estimated using

least squares to obtain an unbiased estimate of the treatment effect, d:

E(Y|T. X;) = b, +dT, + X;b,
It isthismodd (and variations of it in which the set of conditioning variables is modified) that is applied
most widely in Laonde's paper. He dso considers modeds which exploit the parametric assumption on
S (see Heckman [1979)). Our focusisthisfirgt class of modes.

In nornexperimenta settings where data on the control group is ether a self-selected sample, or

in some cases (as in Laonde' s paper) is drawn from an atogether different population, the distribution

*Where y =TV, +(1- T)Yy by =a,, X,b, = X,m = Xm,d=a,-a, ade

= Ug = Uy



of the observable characterigtics between treated and control units need not overlap very much. In this
case, esimating treatment effects through model s such as equation (1) amounts to extrapolating between
two very different groups. If the groups are sufficiently different, such an extrgpolation can be extremdy
mideading, as will be demongrated. Our objective in this paper is to show that by relaxing the linearity
assumptions in (1), the assumption of selection on observables can 4ill be maintained, and that the

resulting estimators perform well under the evauation considered by Laonde.

2.2 Replicating Lalonde' s Results

The characterigtics of the NSW sample are pesented in Table 1. The andyss in Ladonde
(1986) uses only one year of pre-treatment earnings. But as Ashenfelter (1978), Ashenfelter and Card
(1985), Card and Sullivan (1988) and others indicate, the use of severd years of earnings is key in
esimating the variability in the traning effect. Snce the methodology we explore relies on fully exploiting
the sdlection on observables assumption, we obtain from the NSW survey additiond information on the
earnings profile of the participants. This additional informetion alows us to test the sengtivity of the
methodology to selection on observable characteristics such as pre-treatment earnings. Table 1 dso
provides the characteristics of the reduced sample used throughout this paper (185 treated observations

and 260 controls).”

® From the sample of 297 treated and 425 control used by Lalonde, we exclude those observations for which earnings
in calendar 1974 could not be obtained, thus arriving at a reduced sample of 185 treated observations and 260 control
observations. The two samples do, however, differ from each other. For example, earnings in 1975 are substantially
lower for our sample than for the entire sample ($ 1,532 against $ 3,066), as are the earnings two years prior to
assignment (which is equivalent to earnings in 1974 for the second sample). As expected the average month of
assignment increases for the second sample, 18.5 compared to 16.5 for the first sample. These differences simply
reflect the “cohort phenomenon” noticed by the designers of the NSW program and do not compromise the validity
of asimple comparison of sample means as an unbiased estimate of the treatment impact (see MDRC [1983] ).



Non-experimenta estimates of the treatment effect are based on the two distinct comparison
groups used by Laonde (1986), the Pand Study of Income Dynamics (PSID) and Westat's Matched
Current Population Survey-Socid Security Adminigtration File (CPS-SSA).  From these two control
groups, severd sub-groups are created following criteria outlined in Table 2. Following Laonde, the
training effect is estimated in two ways firgt as a difference in means of earnings between the treated and
control groups (the unadjusted treatment effect), and second, through an estimate of equation (1) by
regressing earnings in 1978 on a dummy variable for treatment and a set of covariates (heresfter the
adjusted treatment effect). These two estimators are reported throughout the andysis.

Table 3 presents the complete set of estimators used by Laonde (1986), with the first row
reproducing the experimenta treatment effect usng the NSW contral group. The smple difference in
means, reported in column (4), yields highly negative treatment effects for the CPS and PSID controls.
The adjusted trestment effect which controls for pre-trestment earnings and covariates is reported in
column (10). Applying one of the specification tests suggested by Laonde, of regressang pre-treatment
earnings in 1975 and in 1974 over the same functiona form used to estimate the adjusted treatment
effect, the researcher would have to rgect al the estimators in column (10), since the difference in pre-
trestment earnings (1974 and 1975) of the two groups is datisticaly sgnificant? Likewise, the
esimators in the other columns fal to produce a stable estimate replicating the experimenta benchmark
(see Ldonde [1986] for additiona details).

The essentid ingght of Lalonde's study is that adjustment through linear regresson on the

composite sample of NSW treated and CPS or PSID controls yields estimated treatment effects which

® The usefulness of one additional year of pre-treatment earnings becomes apparent when applying the specification
test; both for PSID-1,2, and CPS-1,2 the test fails for earnings in 1974 and 1975. However, for PSID-3, and CPS-3



fal robustly to replicate the experimenta treatment effect. In the next sections we demondrate that
maintaining the assumption of ignorable assgnment conditiona on covariates, but relaxing the linearity

assumptions, one can successfully replicate the experimental trestment effect.”

3. ldentifying the Average Treatment Effect
3.1 Causality and the Role of Randomization
We begin with a brief review of the notion of causdity that we use. A causeis viewed as a manipulation
or treetment which brings about a change in the variable of interest as compared to a basdline, called the
control. If, as in the previous section, Yi; (Yio) is the vaue of the outcome when unit i is subject to
treetment 1 (trestment O, caled control), the trestment effect for a single unit, t;, is defined by:
t, °Y,- Y, Ascompared to Y; = TYi; + (1-T;)Yio, the observed vaue of the outcome variable, only
oneof Yo or Yi; is observed for any i (referred to as the fundamentd problem of causa inference in
Holland [1986]). Likewise the average treatment effect,
t o E(t,) = E(Y)- E(Y)
= E(Y,[T, =2)xp(T, = 1) + E(Y,|T, = 0) xp(T, = 0)
- [E(YIT, = 0) xp(T, = 0) + E(Y,|T, = ) xp(T, =)],

adjusted pre-treatment earnings in 1975 are statistically insignificantly different for treated and control units, but are
significantly different for earningsin 1974.

" Another way to relax the linearity assumption of the model in Section 2 is suggest by Goldberger (1972b). Equation
(2) isre-written as:

E(Yi|Ti,Xi):j o HAT, + Xij | +T X 2 @

Aswell, one could allow for higher order and interaction terms of the covariates X;. Although, in principleitisa
flexible approach for estimating the treatment effect, estimating such a model when X; is multi-dimensional (and
includes many continuous variables) is an econometric (non-parametric) problem of a high order of difficulty. Simply
saturating aregression with higher order and interaction terms would quickly exhaust the number of observations
available, and which interaction termsto include (or exclude) is an issue that increases in complexity as the number of
possible termsincreases exponentially (see Hardle [1990], aswell as Angrist [1995]).



cannot be edtimated directly because using observed data we can only estimate E(Y;;|Ti=1) and
E(Y;o|T;=0).2 Intuitively, if the trested and control units systematically differ in their characteristics, then
in observing only the treated group we cannot in genera correctly estimate Y, for the whole population
(E(Y,) * E(YIT, = 1)), and likewise for Yo and the control group.

Randomizing assgnment of individuds into treatment and control dlows us to esimate the
average treatment effect over the population of interest, because it implies that

Y Yo LI T -

Thisintumimpliesthat E(Y,|T, =1) = E(Y,|T, =0) and E(Y,[T, =0) = E(Y, T, =1), sothat

t =BT =1 - E(Y[T =0)

E(Y|T, =1)- E(Y[T, =0).

Because the treated and control groups are random subsamples of the participants, Y, for the treated
group is representative of Y;; for the population (likewise for Y, and the control group), so that the

trestment effect is identified.

3.2 Non-Experimental Settings and the Role of the Propensity Score

The extenson of the classical randomized framework to a non-experimenta setting when assgnment to
treatment occurs on observable characteristicsis due to Rubin (1974, 1977, 1978).  In non-
experimenta studies, data is typicdly available only on a treated group made up of a systematic sub-

sample of the population (e.g., volunteers). The control group is either a systematic sub-sample of the

8 An important assumption is that the conditional expectation of the outcome for unit i does not depend on the
treatment status of other units. Otherwise we would have to condition throughout on the entire vector of treatment
assignments. Thisis referred to as the stable unit treatment value assumption (SUTVA) (Holland [1986] and Rubin
[1978)).



population (e.g., those who did not volunteer or were not chosen for treatment), or it may not have been
collected dongside the treatment group and may have to be created by turning to other data sets (for
example, potentid controls are available through periodic population surveys). In these casss, it is
(usudly) the treated group which is drawn from the population of interest.’ The trestment effect isthen
defined as:
oy = BT =1 - E(Y, [T =1). 3
Again, asin the previous section, equation (3) is not identified since Yo is never observed for unitswith
Ti=1.
In a nonexperimenta setting, identification is possible under the assumption of ignorable
assgnment conditiona on covariates, i.e,, assgnment to trestment or contral is a (stochastic) function of
avector of (observable) covariates. In this case, conditiona on the vector X, the assgnment mechanism

is like arandomized experiment (Rubin [1977]):

Proposition 1. If for each unit we observe a vector of covariates X; and
Y, Yior TilXi, " 1,
then:
tha® E(YLT =D~ E(Y,[T, =1)
(4)
= E{E(YIX.T =9 - E(¥1X.T, =0T =1,

where Y/ =TY, + (L- T,)Y,.

° A less natural but consistent case would be to use a treated group to estimate the causal effect for a given control
population of interest. Note that in the setting of a randomized experiment, the treatment effect for the treated
population isidentical to the treatment effect for the untreated population:

{a =g =EOYIT =3 BYTT =0
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Proof: See Appendix A.

Taken literaly, the notion of conditioning correponds to matching or grouping the observations
on the covariate X. But implementing this goproach requires a sufficiently smple set of (discrete)
covariates to keep the task of conditioning on the exact vdue of X a tractable exercise. In many
ingances, this is extremdy difficult; for example if there are k dichotomous covariates, the number of
matching cdls is 2. The Propensity Score Theorem (Rosenbaum and Rubin [19834]) offers a potentid

solution to this problem:

Proposgition 2: Let p(X;) be the probability of unit i having been assigned to treatment, defined as

P(X)=Pr(Ti=1|X))=E(T;[X;), where 0<p(X))<1, " i. Then:

(Y0 Yo) AL T X
implies
(Yo Yo) ILT I POX)):
Proof: See Appendix A.
Corollary 2.1:
tha= Ep(X)[E(YilTi =1p(X,)) - E(YIT, =0, p(X))T :]]_ -

Proof: See Appendix A.
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Thus, independence conditional on covariates extends to the propensty score, as does by immediate
implication our result on the computation of the treatment effect. The achievement of the theorem is that
equation (5) only requires matches on a univariate scae, rather than on X.

Proposition 2 essentialy reduces the exercise of estimating the trestment effect to estimating the
following two nonparametric functions:

E(Yal p(X)) = E(YIT =1 p(X;)

E(Y,l p(X)) = E(YIT, =0, p(X))),
which would be univariate non-parametric regressions if the propensity score were known.™ In this
paper we deliberately focus on relatively intuitive methods for obtaining a flexible functiona form, but in
principle one could use any one of the standard array of non-parametric techniques (see for example
Hardle [1990]).

A complication in implementing this procedure is that the propengty score is unknown. We
edimate it using a logit modd (see Appendix B for detalls). At some levd, this merdy trandfers the
burden of edimating a high-order non-parametric regression from equation (4) to this sep. There area
number of reasons to prefer our approach. Firdt, asindicated earlier, tackling equation (4) directly with
a non-parametric regression would encounter the curse of dimensondity as aproblem in many datasets.
Thisis aso true about estimating the propensity score using standard non-parametric techniques. Hence,
we use a parametric mode for the propensity score. But this is preferable to applying a parametric

modd to the outcome equation, such as equation (2), because there is a well-defined criterion to

10 Since we are estimating the average treatment effect for the treated population, and Y, for the treated population is
known, in effect we do not have to estimate the second of these.
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determine how many interaction terms to include in the specification, embodied in the following

proposition (Rosenbaum and Rubin 1983a):

Propostion 3:
X I T| p(X).
Proof: See Appendix B.

Though dementary, Propogtion 3 is fundamentd in providing a framework to validate estimates of the
propensity score and hence in choosing which higher order and interaction terms to use. For equa
values of the propengty score, the theorem tells us that the covariates are also balanced (in distribution).
This provides an essy diagnostic for how well the score has been estimated (discussed in grester detall
in Appendix B). Findly, as we will see in the next section, depending on the estimation Srategy one

adopts, an extremely precise estimate of the propensity score is not even needed.

4. Estimating Treatment Effect
This section suggests three straightforward methods of using the propensity score to obtain an estimate

of the estimate treatment effect.

4.1 Sratifying on the Score
A commonly used method to control for a Single covariate is dratification. Stratifying on the propensity
score entails dividing the unit interva into blocks or drata thet are sufficiently fine to alow us to consider

the treated and control units within each stratum as having gpproximately the same propensity score,
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because when units have the same propensity score, it follows that the distribution of the entire vector of
covariaes will be the same™ It is in this sense that stratifying on the score ensures an overlap in the
distribution of characteristics across the treated and control groups.

Within each such dratum, the trestment effect is the difference of two expectations that are a
function of observables, E(Yi1|Ti=1,p(Xi))-E(Yio|Ti=0,p(Xi)). Estimating t |r=1,5x) requires only point
estimates of each term, and like a randomized experiment, the difference of meansis an (gpproximately)
unbiased estimator.? Within each block very Ittle moddling is required, and the choice of functiona
formsis no longer amgor issue. A weighted average of the treetment effect within each block (where
the weights are the number of treated units in each block) estimates the average trestment effect for the
treated.

A gmple and immediate test of whether an estimate of the propensty score is sufficiently
accurate is that one can find a partition dructure such that, within each dratum, observable
characteristics are balanced across treated and control units. In this case, the estimate of the propendty

score is used only in grouping units, not directly in the estimator.

" The method suggested in Appendix B for estimating the propensity score also involves stratifying on the
estimated propensity score. A natural choice here would be to usethe same strata. Cochran (1968) and Rosenbaum
and Rubin (1985a) show that under certain restrictions, including normality of covariate distribution, five equal size
blocks reduce 95 percent of the bias. Although these results can be taken as a benchmark for the number of blocks
that would reduce most of the bias from differencesin the distribution of the covariates, ultimately the blocking isa
function of the overlap between the distribution of the score for treated and control samples as well as sample size. It
isalso evident that the simpl e stratification procedure adopted in the appendix is not the only way of determining the
number of blocks that balance the covariates; other non-parametric techniques could be used such as kernel or
nearest neighbor (see Hardle [1990]).

2 Using a difference in means within each stratum amounts to specifying a step-function functional form. More
generally one could use more complicated forms within each stratum (linear, quadratic, etc.), and impose continuity or
differentiability requirements as well. These strategies are simpler versions of standard non-parametric regression
techniques.
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4.2 Matching on the Propensity Score

A second estimation dSrategy that follows from equation (5) is pair-wise matching on the score. The
conditioning on the propendty score is implemented by matching techniques that pair each treated unit
to the single control unit with the closest propensity score.™® The matched sample will have the property
that the distribution of observed covariates for the treated and control groupsis approximately the same.
Given the assumption of conditiona ignorability (Propostion 1), the trestment effect is estimated by
taking a difference in means or using least squares adjustment gppropriately weighted, to correct for any
remaining imbalance. An dgorithm for determining how to maich units within some bands of tolerance
on the inexactitude of the match needs to be specified, and there are delicate issues regarding the order
in which to maich the treated units (see Rosenbaum and Rubin [1985b], and Rubin and Thomas
[1992]). Results reported in this paper for matching follow a procedure that accounts for the minimal
overlap between the treated and control distributions by alowing a given control unit to be matched with

more than one treated unit (see Dehgjia and Wahba [1995]).*

4.3 Using the Propensity Score as Weights

The score can be used directly as a weight in estimating the average treatment effect, as sated in the

following propogtion:

Proposition 4:

3 1n some sense matching is an extreme form of stratification where each treated observation isin a separate stratum,
which is sufficiently narrow to include only one control. Note that control units would be thrown out in a matching
exercise even if they were previously included in blocks determined by the score.

¥ Early work on matching revolved around matching on a covariate or a set of covariates. For a theoretical

examination of matching on a set of covariates see Rubin (1973, 1979).
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1 o nencE® p(X,) 0o
— TY - Q- T)——==Y+
NT alzl gl I ( I)l_ p(XI) Ig

is a consistent estimator of t|r=;, where Y is the observed value of outcome for unit i, T; isan
index variable (=1 if treated and =0 if control), 0<p(X)<1, and N" and N are the total number

of treated and control observations respectively.

Proof: See Appendix C

This estimator differs from the first two to the extent that the objective of the method adopted in this
paper is to be agnostic about which functiona form needs to be assumed. So even if in estimating the
propendty score the functiond form is not exactly correct, but within each stratum the observable
covariates of treated and control units balance, then given the assumption of sdlection on observables
this is sufficient for an unbiased edimate of the trestment effect -- independent of the estimate of the
propengity score. There is no such comfort in usng weighting. A very different estimate of the trestment
obtained when usng weighting, compared to using dratification or matching, would suggest that ather
the score is mis-specified (an issue that can be corrected through additiona interaction terms and higher
order terms) or that the treatment effect is not ignorable conditional on the score.  In this sense,

Propogtion 4 provides an additiona sdlf-diagnogtic test.

5. Results Using the Propensity Score
5.1 Estimating the Propensity Score
Following the argument in Section 3, the propensty score is estimated using a logit with the treatment

datus as the dependent variable and the pre-treatment covariates as independent varidbles. The find
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choice of interaction and higher order terms included in the logigtic function was determined soldy by
the need to balance the covariates within blocks as defined in the dgorithm (see Appendix B). This
procedure was repeated for each of the six control groups of Table 2 separately, and the resulting
logistic functions are presented in the footnote of Table 4. Note that in this procedure the outcome
vaiable (earnings in 1978) plays no role® Note also, that the procedure embodies specification tests
of the type suggested by Laonde. Within each block unadjusted as well as regressionadjusted
differences in dl pre-trestment covariates between the two groups, including pre-training earnings, were

edimated. Only if the difference was not significant were the blocks maintained.

5.2 Treatment Effect Stratifying on the Propensity Score
The firg of the estimators discussed in Section 4 uses dratification on the estimated propendty score.
The trestment effect is estimated by summing over the blocks the difference of the within-block means
of the outcome variable for the treated and control observations, where the sum is weighted by the
number of treated obsarvaions within each block, obtaining the unadjusted treatment effect.’®
Alternatively, a treatment effect could be obtained usng the same regresson specification as column
(10) of Table 4 within each block, and again taking a weighted sum over the blocks to obtain the
adjusted treatment effect.

Tables 5 and 6 present the disaggregated treatment effect usang the dratification resulting from
the estimation of the propengity score for PSID-1 and CPS-1 respectively. Note that dl control

observations with an estimated score lower than the minimum estimated score for treated observations

!> Earnings do enter however in lagged form as pre-treatment earningsin 1975 and 1974.
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are excluded. For Table 5, this is indicated in the first block where the lowest estimated score is
0.0004. The number of control observations used is determined only by the degree of overlap between
the digtribution of the score for the treated and control groups, resulting in 1070 control observations
from PSID-1. The estimated training effect is $1,509 and $1,647 for the unadjusted and adjusted
esimates respectively. In Table 6 the minimum estimated score is 0.001, which is the lowest estimated
vaue for the treated observations. The total number of CPS-1 control actudly used is 3,992 implying
that 12,060 control observations (afull 75 percent of the tota number of control observations) have an
estimated score less than the minimum estimated score for the trested observations. Thisillusirates well
the weakness of the standard modd; in linear models such as those tested by Laonde (1986), one is
extrapolating from a group made up mostly of irrdevant controls. With CPS as a control group, after
controlling for observable characterigtics through the propensity score, the unadjusted training effect is
$1,713, and the adjusted training effect $1,774.

Severd other characterigtics of the tables should be mentioned. Blocks vary in their score range
because though a greater number of observations within a block is desirable, ultimately the block sze
will depend on baancing the covariates. The trestment effect varies within each block since it depends
on the particular sample characteristics represented in the block. For example, treated observations in
block 1 of Table 6 had an average age of 27, 20 percent of them were black participants, and the
average earnings was $6,620 in 1975. In contradt, the last block was made wp of treated participants
with an average age of 26, dl of whom were black, with an average income of $194 in 1975. The

heterogeneity of the trestment effect is taken up further in Section 5.5. Findly, as in a randomized

1% |n the non-experimental set-up this corresponds to the average treatment effect conditional on having been in the
NSW treated group. Because the NSW is arandomized experiment its treated and control groups are drawn from the
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experiment, the unadjusted and adjusted trestment effects within each block are smilar, which
demondirates that by conditioning on the propensity score we are baancing the other covariates as well.
The edtimated treatment effects from Stratification on the score for dl Sx groups are summearized
in Table 4 in columns (4) and (5). Columns (1) and (2) repeet the benchmark estimates discussed
earlier for convenience. The main feature of these results is that the use of the propendty score has
eliminated those observations in the control groups that are not comparable to the treated observations,
without resorting to any ad hoc assumptions on the characteristics of the control observations used to
derive PSID-2 and PSID-3 and CPS-1 and CPS-3. Thisis not to say that in going from CPS-1 to
CPS-3 and PSID-1 to PSID-3 one may not improve the estimate; instead, the basic point is that
ensuring overlap through the score is a more sysematic way to iminate irrdlevant controls.
Furthermore, comparing these estimates with the estimated training effect over the entire sample
(columns 1 and 2) demongrates the problem associated with the extrgpolation implicit in the least
sguares training effect when there is minima overlap in the two digtributions.  Unlike the estimates in
columns (1) and (2), the trestment effect estimated in column (3) is edimaed usng the same
specification as (2), adding the score as a variable and regressing over the overlap sample specified in
column (6). The estimated trestment effect for PSID-1 and CPS-1 is $542 and $893 respectively. A
constant additive trestment effect estimated in the overlgp sample does not result in subgtantialy higher
esimates. Asresultsin columns (4) and (5) indicate, ensuring that the digtributions overlgp and rdaxing
the congant effect treetment assumption through a flexible functiond form yied estimates that are

condderably closer to the benchmark estimate.

same population, so the correct benchmark for comparison remains the treatment effect of $1,794.
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Moving down the various control groups does not sgnificantly dter the estimated treatment
effect in columns (4) and (5). The estimated treatment effects range from a low of $1,335 to a high of
$1,713 for the unadjusted estimate with CPS controls and from alow of $1,509 to a high of $1,829 for
PSID contrals. In the case of adjusted estimates the training effect varies from $1,023 to $1,774 and
$1,647 to $2,538 for the CPS and PSID controls respectively. Note however that under stratification
on the propendgity score there is no need to construct further control groups, sSnce non-comparable
controls are aready discarded through stratification. Thus, under this gpproach a researcher would no
longer need to construct somewhat arbitrary control groups such as PSID-2, PSID-3 and CPS-2,

CPS-3 and would report only the adjusted training effects that vary between $1,509 and $1,774.

5.3 Matching on the Propensity Score

As suggested in Section 4 an dternative to Stratifying on the score is pair-wise matching. By matching
each treated unit to the control with the nearest propensity score (with replacement), we focus attention
on a much smaller subset of the overdl control group. For PSID-1 to 3, 52, 31, and 43 controls are
used respectively and for CPS-1 to 3, the number of controls matched to the treated observations are
106, 87, and 63 respectively. The characteristics of the matched control samples are reported in Table
7. Comparing the sample characterigtics of the matched sample with unmatched samples in Table 2
shows precisdy the result of matching on the propensty score. Columns (7) and (8) of Table 4 present
the unadjusted and adjusted treatment effects.’” The trestment effect varies from $870 to $2,190

(unadjusted) and $826 and $1,740 (adjusted) with PSID controls. With CPS controls, the treatment

" Note however that weights need to be used in matched samples to take into account the matching of more than one
treated observation to the same control observation. For more details see Dehejia and Wahba (1995).
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effect varies from $-466 to $1,445 (unadjusted) and $-372 to $1,589 (adjusted). Again, aresearcher
following our gpproach would not need to construct control groups other than the origina control group,
S0 that the adjusted estimated trestment effect under matching methods would vary between $1,174
and $1,690. Although the researcher would miss etimates somewhat closer to the experimenta
benchmark by not using control groups such as PSID-3 and CPS-2, she would also eschew particularly

poor results by not using ad hoc sub-groups such as PSID-2 or CPS-3.

5.4 Using the Propensity Score as Weights

The estimates using the score directly in a weighting scheme are presented in column (9) of Table 4.
The treatment effects for the PSID-1 and CPS-1 samples are $1,129 and $1,485 respectively. Aswe
vary the control sample (and accordingly re-run the logistic regresson), there is noticegble variaion in
the reported trestment effects, though they do reman podtive. It is difficult to give a proper
interpretation to the estimates under the reduced samples; the observations dropped from the control
group could be those which are least likely to be treated (low score), or if the chosen criterion for
reducing the sample is an inappropriate one, the observations dropped could be those that are most
likely to be trested (high score). Either way, by removing them from the sample the information they
contribute to estimating the score accurately islogt.

The criticd issue concerning sub-groups such as those created by Laonde (1986) to reduce the
bias is that forming subsets of the control group based on single characteristics such as employment
status between PSID-1 and -2, for example, imposes a lexicographic preference in terms of suitability
of matches on that characteridtic. Instead, by adlowing the score to choose from the full data set, one

incorporates al observable characteristics weighted by the probability of selection.
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5.5 Estimating the Treatment Effect by Sample Characteristics

A notable feature of the results presented in the previous sections is the high standard errors on the
trestment effects. One possible explanation is heterogenaity in the treatment effect, an issue which is of
independent interest.™®

As Tables 5 and 6 indicate, the treatment effect for the blocks vary from a highly postive to a
highly negeative effect. These estimated treatment effects are for observations with smilar propengty
scores and socio-economic characterigtics within blocks, but different across the blocks. For example,
block 6 of Table 6 with a score range of 0.6 to 0.85 is made up of 26 treated observations and 12
control observations al of whom are blacks, with an average age of 26, 10 years of high school, less
than a third of them married, with no earnings in 1974, and very low earnings ($250) in 1975. For this
group the average training effect was $2,364 (unadjusted) and $3,683 (adjusted). But the blocking
cannot provide a sharp characterization of the trestment effect in terms of specific pre-treatment
characterigtics. Thisis offered in Tables 8 and 9.

Table 8 (rows 1 and 2) presents the training effect using the two randomized samples of Table 1
and the training effect for sub-groups selected by sample characteristics from the second sample. The
trestment effect reported in column 3 is estimated by taking a difference-in-means (the unadjusted
treatment effect) of 1978 earnings between the treated and control groups. The relatively high stlandard
error for the treatment effect of $886 (se= 476) suggedts the possibility of heterogeneity of the

trestment effect among units. The higher treatment effect for the second sample ($1794) is a reflection
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of the cohort phenomenon as explained previoudy. Within the second sample, the varidion in training
effect is indicated in column (4). Those participants, for example, that completed high school or that
have more than 11 years of schooling have a treatment effect which is much higher than the average
($3,085), and dgnificantly different from the trestment effect of their complement (no degree or less than
deven years of schooling). Unemployment in 1974 is an important covariate that distinguishes
participants (the treatment effect is $3,376 for those unemployed in 1974 and $-685 for those
employed in 1974), whereas whether an individua was employed or not in 1975 makes little difference
in terms of treatment effect. The importance of the earnings profile for 1974 in determining the
probability of traning participation is discussed in Section 6.2 in the context of the sengtivity to the
selection on observables assumption. Table 8 exposes a dgnificant degree of heterogenety in the
benchmark training effect, suggesting that a model with a constant trestment effect such as equation (1)
can be substantialy mideading. In Tables 9a and 9b we see that the potential heterogeneity of treatment
effectsis readily explored through the estimation strategy followed in this paper, even in the absence of a
randomized experiment.

Tables 9a and 9b estimate the treatment effect by sample characteristics usng the PSID-1 and
CPS-1 controls respectively and the propensty score stratification scheme discussed above. We note
that for many of the characteridtics the estimates reasonably match the experimentd results.  This
provides added confidence in the accuracy of the non-experimentd results, snce not only do they track
the average treatment effect for the NSW group, but they dso track the average treatment effect for

sub-sets of the original group. Note however that standard errors are il relaively high for many of the

18 Another explanation for the high standard errorsisthat there is minimal overlap between the distributions of the
treated and control observations, which implies small sasmple sizesfor a number of the blocks, asindicated in Tables 5
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trestment effects controlling for individua characteridtics, especidly when usng PSID-1 as control
group.

Thus in summary, using both the PSID and CPS, we edtimate trestment effects which come
reasonably close to the experimenta benchmark. Laonde's message from his andyss was that the
researcher is presented with an array of estimates which differ dramaticdly (from $-15,205 to $1,326)
and with no clear way to choose between them. In contrast, from our array of estimators, the answer
which emerges is much more focused. Furthermore, the estimates are based on a smple method for
comparing observations as summarized by their propendty score. The flexibility of the approach isdso
demondtrated in the way it is able to replicate to alarge extent non-constant treatment effect embodied

in the origind experimentd data st.

6. Sengitivity Analysis

6.1 Sengitivity to Specification of the Propensity Score

Under the dgorithm defined in Appendix B, the choice of interaction terms in the logigtic function is
entirdly determined by the need to balance the covariates within blocks. Table 10 presents various point
esimates of the treatment effect with CPS-1 and PSID-1 as control groups, starting with the logit
function reported in Table 4 and then excluding higher order terms (squared and cubic) followed by
exduding interaction terms from the logit. Although none of the resulting logidtic functions completdy
balance the covariates for equa values of the score (as did the logit function reported in Table 4), the
results indicate that the point estimates draifying on the score are not highly senstive to logit

specifications. Estimates in column (3) where the score enters linearly in the regression are aso not very

and 6, resulting in higher standard errors than treatment effects estimated directly over the full sample.
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sendtive to propendty score specification. This points to the crucid characteristic of our approach,
namely that the choice of termsin the logit specification is driven only by the need to baance covariates
of observations with smilar propendty scores. In contrast, estimating the trestment effect through
generdizations of the regresson modd in equation (1) (e.g., equation (2)) requires prior information on
which terms to include. Note aso that with CPS controls, standard errors are significantly lower.*
Sengtivity andyds to sarting parameters in the logit for score estimation (see the first sep in Figure 1,
Appendix B) was dso conducted and generdly produced the same logit specification. Also, results

were not sengtive to changesin the initid blocking rule (see the second step in Figure 1).

6.2 Senditivity to Selection on Observables
The key assumption driving the above andyssisthat dl the variables generating assgnment to trestment
(and correlated with potential outcomes Yi; and Y,o) are observed. It is clear that rarely are dl the
relevant variables observed by the researcher. Thus, it is of interest to examine how far we can go in
removing the bias from the results through conditioning on observables. In this section we examine this
issue by excluding pre-treatment earnings in 1974 and re-estimating the trestment effect usang the
estimators described in Section 4. The results of Table 4 are re-computed and presented in Table 11.
The first apparent difference between Tables 4 and 11 is the sengtivity of the PSID sample to
pre-treatment earnings in 1974. When 1974 earnings are dropped, estimates of the training effect are
negative with very high standard errors. As expected, the use of Laonde's PSID-1 and PSID-2

samples does not change the results very much. Estimates of the treatment effect usng matching or the

®The lower standard errors that come with coarser specification of the logistic function suggest a tradeoff between
efficiency and unbiasedness. The properties of the algorithm proposed in Section 3 and any other algorithm need to
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score as welghts aso perform poorly. In contrast, using CPS as a control group results in estimates that
are more robust. Stretification on the score with CPS-1 produces an adjusted training effect of $1,207
(s.e.=880). Pair-wise matching on the score also produces a significant effect of $1,969 (s.e.=808),
only $175 higher than the benchmark case. The reason for this important difference between the two
control groups is found by examining the disribution of earnings in 1974 and 1975 across the
propensity score blocks. Whereas earnings in 1974 are not balanced for most of the blocks in the case
of PSID-1, the opposite is true for most (but not dl) of the blocks with CPS-1. The difference in the
two samples comes from relatively different pre-trestment earnings profiles. In PSID-1, earnings in
1975 do not follow closely earnings in 1974, controlling for the propengity score; for higher propensity
score levels, earnings in 1975 do not fdl as sharply as earnings in 1974, resulting in a negdive
correlation between the two years. In contrast, earnings in CPS-1 for 1974 and 1975 follow each
other closdy, both dropping substantidly with higher score leves, resulting in a podtive corrdation
across al blocks. With the dip in earnings captured earlier in the CPS sample, dropping earnings in
1974 dffects the estimates of the training effect for PSID-1 but not CPS-1 (see Ashenfelter [1974,
1978] and Ashenfelter and Card [1985] on what has been referred to as the “Ashenfdter dip” in

earnings prior to enrollment in training programs).

6.3 The Use of More than One Control Group
By comparing the overal resultsin Table 11 to those in Table 4 the value of using severa control groups
becomes evident. Whereas a coherent estimate of the treatment effect emerges in Table 4, Table 11

shows that if the researcher did not know that an important covariate was missng, she would report a

be evaluated fully, adirection for future research.
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treatment effect that varies substantialy depending on the control group used. How does one compare
the estimates of the treatment effect for two (or more) control groups? In the above andyss we tested
sengtivity to the available set of covariates by usng our knowledge of the experimentd benchmark to
see how far we strayed from the true estimate when a key covariate was set asde. In gpplications, such
randomized data sets are not typicdly available, but though it is more difficult to assess sengtivity to
unobservable characterigtics, it is not impossible (see Rosenbaum and Rubin [1983h)).

The use of more than one control group provides additiond information regarding the sengtivity
of the results to unobservable covariates. The practice of using multiple control groups in economics
and more specificdly in the manpower training literature is not uncommon, but studies generdly report
only the final control group used in the evauation.”® There is however afundamental difference between
sengitivity to the choice of control group within a specific data set (and sub-groups obtained fromit), as
was addressed in the previous section, and between two distinct control groups. The former isan issue
dready addressed by making use of the propensity score. Comparing results between two distinct
control groups is a more delicate exercise. Some studies (Rosenbaum [1984, 1987]) suggest that the
use of a second control group in non-experimental settings can sometimes help detect the presence of
important variables not observed inthe data. The intuition is Smple, and wasiillustrated by Tables 4 and
11. When avariable that determines assgnment to treatment is not observed there are two possibilities.
If the estimated treatment effect across the two samples is quite Smilar (as in Table 4), this suggests
ether that al important variables are observed or that the unobserved variable affects the observed

covariates of both samplesin asmilar way. If instead the estimates differ subgtantidly (asin Table 11),

? Fraker and Maynard (1987) provide a detailed analysis of the treatment effect for the NSW program using a series
of control groups. They conclude that the results are generally sensitive to the choice of control groups.
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this suggests quite srongly the presence of some unobserved varigble which affects each sample
differently. Without an experimentd data set, the use of multiple control groups can provide a partid

test for the presence of unobserved variables.

7. Conclusion
This paper presents a framework for estimating trestment effects in non-experimenta settings when
assgnment to treatment is assumed to be ignorable conditiona on observable characterigtics. Drawing
from the datitics literature on causd inference analyss, the paper defines the role of the propengity
score in identifying the trestment effect with conditiondly ignorable assgnment. The paper then
proposes an agorithm for estimating the propensity score, and three types of estimators of the treatment
effect based on the score.

The edtimators are evaluated using Laonde' s semind re-creation of a non-experimenta setting.
Results show that the estimates of the training effect are close to the benchmark randomized case, and
are robust to specification of the control groups defined by Laonde. By dratifying observations on the
score, a researcher need only use the origina control groups to estimate the training effect and would
report an effect that varies between $1,509 and $1,774 compared to the randomized treatment effect of
$1,794. Using estimators based on matching or weighting by the propendty score lead to smilar
edimates. The paper dso evauates sendtivity to the specification of the propendty score as well as
sensitivity to the selection on observables assumption. Results indicate the robustness of the estimated
traning effect to changes in the benchmark logit specification and to blocking methods.  Excluding

earnings in 1974 from the analys's affects the estimated training effect when using PSID as control but
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less so with CPS, aresult that underscores the importance of using more than one control group in non-
experimenta studies.

In most of the estimates the standard errors are high, and athough the heterogeneity of the
trestment effect as well as the minimd overlap in the digribution of covariates between treated and
control go far in explaining the high standard errors, further research is needed to examine the optimality
properties of the rule specifying the score, such as the tradeoff between bias and efficiency. While the
results obtained in the paper are specific to the data set, further studies based on non-experimentd
evauation of randomized studies should provide additiond evidence on the merits of this gpproach and
on how generd (or specific) are these methods to the data a hand. This does not deny the importance
of randomized experiments, indeed, it is thanks to a randomized data set that such an evauation was
made possible.

The Ladonde paper and the ensuing debate may have cast a negative light on standard
econometric methods of evauating socia programs. This paper attempts to rehabilitate the assumption
of selection on observables with the use of the propensity score to exploit more carefully the information
contained in obsarvable covariaes. There are however many settings in which the assumption of
selection on observables is not sufficient to identify the trestment. The conclusion to draw from this
paper is that even when the researcher suspects that important characteristics are unobserved and that
excluson redrictions that identify the treetment may be avalable, the sdf-diagnogtic nature of the
aoproach reveds vauable information to the researcher by examining the comparability of the
digtributions of the treated and control units. The techniques exposed in this paper are powerful enough
to sort out which observations from a large pool of potentid controls are relevant comparisons to

treated units under consderation and to help guide the researcher in other possible directions. Our
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argument would be: before recourse to modding through assumptions on functiond forms and
digtribution -- assumptions on unobservables, which by ther very nature are difficult to test in the data --

there is substantia reward in exploring firgt the information contained in the varigbles that are observed.
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Appendix A. Selection on Observables and the Role of the Propensity Score

Proposition A.1: If for each unit we observe a vector of covariates X; and
Yi1, Yio- TiXi, " i
then:
tha® BV =D - E(Y[T =1)

= E{E(YIX, T =1 - E(YIX,T, =0T, =1,

where Y =TY +(A- T)Y,.

Proof:
Y Yo LT[
b E(Y/X,.T =2) = E[%/X,.T =0)= E[vx)
and smilarly for Yo, which dlows us to write:
tha = E(YT =9) - E(Y,[T =1)
= B E(YlX.. T =1)- E(Y|X.T =1)T, =1}
= E,{E(YX.. T, =1)- E(Yo|X,.T, =0T, =1}
= EqE(Y]x. T =9)- E(x|x. T =0Jm =1

=Bt =4,

WheretT:J,x ° EYIX, T =1)- E(Y|X,, T, =0).
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Proposition A.2:  Let p(X;) be the probability of unit i having been assigned to treatment,

defined as p(X)=Pr(T;=1|X;)=E(T;|X), where 0<p(X)<1, " i. Then:
(Y0 Yo) LT X,
implies
(Y, Yo) LT PCX,).

Pr oof:
E(T 1Y, Yo, P(X))
= EX{E(T Y, Yo, X)Ya, Yo, P(X)}
=E {E(T|x)|Y Y,, p(X)}
= E,{ pOX)|Y,, Yo, p(X)}
= p(X).
Hence,
BT 1Y, Yol p(X).
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Corollary A2.1:  th_ = E i {E(YIT =1, p(X,))- E(YIT, =0, p(X))T; =1} .
Proof:
e = B(YIT = 2) - E(YIT 1)

= Epol EMT =1 p(X)) - E(Y[T, =1 pOX))T, =1}

:Ep(X){E( 1 =lp(X) ( |T| =0, p(Xi))|'|'i :]}
= Eyo{ E(YIT =1 p0X)- E(YIT, =0, (X)), =1}
° Ep(x){”T o0 [T = J}
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Appendix B. Estimating the Propensity Score

The firg sep in estimating the trestment effect is to estimate the propendty score. Any standard
probability modd can be used, eg., logit or probit. It is important to remember that the role of the
score is only in reducing the dimendons of the conditioning, and, as such, it has no behaviord
assumptions atached to it. For ease of estimation, most gpplications in the datitics literature have
concentrated on the logit modd:

gl %)

Pr(T; =1X) = PR
where T; is the treatment status, and h(X;) is made up of linear and higher order terms of the covariates
on which we condiition to obtain an ignorable trestment assignment.*

In estimating the score through a probability modd the choice of which interaction or higher order term
to include is determined solely by the need to condition fully on the observable characteristics that make
up the assgnment mechanism. The following proposition forms the basis of the agorithm we propose to
estimate the propensity score (see Rosenbaum and Rubin 1983a):

Propostion A.3:
X I T| p(X).

Proof: From the definition of p(X) in Proposition A.2:
E(TIX;.P(X; ) = E(TIX) = p(X;).

The dgorithm works as follows. Starting with a parsmonious logigic function with linear
covariates to estimate the score, rank al observations by the estimated propensity score (from lowest to
highest). Divide the observations into strata such that within each stratum or block the difference in
score for treasted and control observations is indggnificant (a t-test on a difference in means between the
treated and control groups is a criterion used in this agorithm). Proposition A.3 tells us that within each
dratum the digtribution of the covariates should ke approximately the same across the treated and
control groups once the score is controlled for. Within each stratum, we can test for satigticaly
sgnificant differences between the distribution of covariates for trested and control units; operationdly,
t-tests on differences in the firs moments are often sufficient but ajoint F-test for the difference in means
for al the variables within each block could aso be performed.?? When the covariates are not balanced
within a particular block, the block may be too coarsdly defined; recall that Proposition A.3 in fact dedls
with observations with an identica propensty score. The solution adopted is to divide the block into
finer blocks and test again for no difference in the digtribution of the covariates within the finer blocks. If

' Because we alow for higher order termsin X, this choice is not very restrictive. By re-arranging and taking logs,
we obtain: |n(Pr(Tu=llX% pr(t=1x,)) = | h(xi ) A Taylor series expansion allows us an arbitrarily precise

approximation. See also Rosenbaum and Rubin (1983a).
% More generally one can also consider higher moments or interactions, but usually there is little difference in the
results.
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however some covariates remain unbaanced for many blocks, the score may be poorly estimated,
which suggests that additiond terms (interaction or higher order terms) of the unbalanced covariates
should be added to the logistic specification to control for these characteristics better. This procedureis
repeated for each given block until covariates are balanced. # The dgorithm is summarized in Figure 1.

Figure1l- A Smple Algorithm for Estimating the Propensity Score

Start with aparsmonious logit function to estimate the score.
Sort data according to estimated propensity score (ranking from lowest to highest).
Stratify al observations such that estimated propensity scores within a stratum for trested
and control are close (no sgnificant difference); eg. sart by dividing observationsin blocks
of equd scorerange (0-0.2, ...,0.8-1).
Satistica test: difference-in-means for al covariates of treated and control in al blocks are
not sgnificant from zero at relevant confidence level.

1. If covariates are balanced between treated and control observations for al blocks, stop.

2. If covariae i is not baanced for some blocks, divide block into finer blocks and re-
evduae.

3. If covariae i is not baanced for al blocks, modify logit by adding interaction terms and/or
higher order terms of covariate i, and re-evauate.

A key property of this estimation procedure is that it uses awell-defined criterion to determine
which interaction terms to use in the estimation, namely those terms which balance the covariates. It dso
makes no use of the outcome variable, and embodies one of the specification tests proposed by
Laonde (1986) and others in the context of evauating the impact of training on earnings, namely to test
for the regression adjusted difference in the earnings prior to treatment. Once the propengty scoreis
estimated the treatment effect can be obtained in a number of ways.
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Appendix C

Proposition A.4:

1 o nT+nCR p(XI) YO

Nran g @MY

IS a consistent estimator of t|r=;, where Y is the observed value of outcome for unit i, T; isan
index variable (=1 if treated and =0 if control), 0<p(X;)<1, and N" and N are the total number
of treated and control observations respectively.

Proof: In the population consder g, where:

q° EGIY, - - o ™Y

= £ GETYIx) - TP B TovIx)S

= £, (POX)E(YA[%,) - POX)E(Yo|X)

= OPCO(E(YalX,) - E(YolX,)) F(X)d (X))

= OPr(T, =D(E(Y %) - E(Yo X)) (X[T, =Dd(X,)

= Pr(T, = DE, o (E(Ys - Yol X)).

Thus t |,,=q/Pr(T, =1), and the sample andogue of t is

1 o n"+nCER p(X.) o]
— TY - —————(1- T)Y =
NT i=1 gl i 1- p(x|)( |) i



