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nal gamblers who overbet long shots because of risk-love. The com-
peting behavioral explanations emphasize the role of misperceptions
of probabilities. We provide novel empirical tests that can discriminate
between these competing theories by assessing whether the models
that explain gamblers’ choices in one part of their choice set (betting
to win) can also rationalize decisions over a wider choice set, including
compound bets in the exacta, quinella, or trifecta pools. Using a new,
large-scale data set ideally suited to implement these tests, we find
evidence in favor of the view that misperceptions of probability drive
the favorite–long shot bias, as suggested by prospect theory.
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I. Introduction

The racetrack provides a natural laboratory for economists interested
in understanding decision making under uncertainty. The most dis-
cussed empirical regularity in racetrack gambling markets is the favorite–
long shot bias: equilibrium market prices (betting odds) provide biased
estimates of the probability of a horse winning. Specifically, bettors value
long shots more than expected given how rarely they win, and they value
favorites too little given how often they win. Figure 1 illustrates, showing
that the rate of return to betting on horses with odds of 100/1 or greater
is about �61 percent, whereas betting the favorite in every race yields
losses of only 5.5 percent. Betting randomly yields average returns of
�23 percent, which, while better than long shots, are negative, as the
racetrack takes a percentage of each bet to fund operations.1

Since the favorite–long shot bias was first noted by Griffith in 1949,
it has been found in racetrack betting data around the world, with very
few exceptions. The literature documenting this bias is voluminous and
covers both bookmaker and pari-mutuel markets.2

Two broad sets of theories have been proposed to explain the favorite–
long shot bias. First, neoclassical theory suggests that the prices bettors
are willing to pay for various gambles can be used to recover their utility
function. While betting at any odds is actuarially unfair, this is partic-
ularly acute for long shots—which are also the riskiest investments. Thus,
the neoclassical approach can reconcile both gambling and the long
shot bias only by positing (at least locally) risk-loving utility functions,
as in Friedman and Savage (1948).

Alternatively, behavioral theories suggest that cognitive errors and
misperceptions of probabilities play a role in market mispricing. These
theories incorporate laboratory studies by cognitive psychologists that
show people are systematically poor at discerning between small and
tiny probabilities and hence price both similarly. Further, people exhibit
a strong preference for certainty over extremely likely outcomes, leading
highly probable gambles to be underpriced. These results form an im-
portant foundation of prospect theory (Kahneman and Tversky 1979).

Our aim in this paper is to test whether the risk-love class of models
or the misperceptions class of models simultaneously fits data from multiple
betting pools. While there exist many specific models of the favorite–
long shot bias, we show in Section III that each yields implications for
the pricing of gambles equivalent to stark models of either a risk-loving

1 For more on the analytical treatment of the track take, see n. 8.
2 Thaler and Ziemba (1988), Sauer (1998), and Snowberg and Wolfers (2007) survey

the literature. The exceptions are Busche and Hall (1988), which finds that the favorite–
long shot bias is not evident in data on 2,653 Hong Kong races, and Busche (1994), which
confirms this finding in an additional 2,690 races in Hong Kong and 1,738 races in Japan.
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Fig. 1.—The favorite–long shot bias: the rate of return on win bets declines as risk
increases. The sample includes 5,610,580 horse race starts in the United States from 1992
to 2001. Lines reflect Lowess smoothing (bandwidth p 0.4).

representative agent or a representative agent who bases her decisions
on biased perceptions of true probabilities. That is, the favorite–long
shot bias can be fully rationalized by a standard rational expectations
expected-utility model or by appealing to an expected wealth-maximiz-
ing agent who overweights small probabilities and underweights large
probabilities.3 Thus, without parametric assumptions, which we are un-
willing to make, the two theories are observationally equivalent when
examining average rates of return to win bets at different odds.

We combine new data with a novel econometric identification strategy
to discriminate between these two classes of theories. Our data include
all 6.4 million horse race starts in the United States from 1992 to 2001.
These data are an order of magnitude larger than any data set previously
examined and allow us to be extremely precise in establishing the rel-
evant stylized facts.

Our econometric innovation is to distinguish between these theories
by deriving testable predictions about the pricing of compound lotteries
(also called exotic bets at the racetrack). For example, an exacta is a bet
on both which horse will come first and which will come second. Es-

3 Or adopting a behavioral vs. neoclassical distinction, we follow Gabriel and Marsden
(1990) in asking, “Are we observing an inefficient market or simply one in which the
tastes and preferences of the market participations lead to the observed results?” (885).
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sentially, we ask whether the preferences and perceptions that ratio-
nalize the favorite–long shot bias (in win bet data) can also explain the
pricing of exactas, quinellas (a bet on two horses to come first and second
in either order), and trifectas (a bet on which horse will come in first,
which second, and which third). By expanding the choice set under
consideration (to correspond with the bettor’s actual choice set!), we
use each theory to derive unique testable predictions. We find that the
misperceptions class more accurately predicts the prices of exotic bets
and also their relative prices.

To demonstrate the application of this idea to our data, note that
betting on horses with odds between 4/1 and 9/1 has an approximately
constant rate of return (at �18 percent; see fig. 1). Thus, the misper-
ceptions class infers that bettors are equally well calibrated over this
range, and hence betting on combinations of outcomes among such
horses will yield similar rates of return. That is, betting on an exacta
with a 4/1 horse to win and a 9/1 horse to come in second will yield
expected returns similar to those from betting on the exacta with the
reverse ordering (although the odds of the two exactas will differ). In
contrast, under the risk-love model, bettors are willing to pay a larger
risk penalty for the riskier bet—such as the exacta in which the 9/1
horse wins and the 4/1 horse runs second—decreasing its rate of return
relative to the reverse ordering.

Our research question is most similar to the questions asked by Jullien
and Salanié (2000) and Gandhi (2007), who attempt to differentiate
between preference- and perception-based explanations of the favorite–
long shot bias using data only on the price of win bets.4 The results of
the former study favor perception-based explanations and the results of
the latter favor preference-based explanations. Rosett (1965) conducts
a related analysis in that he considers both win bets and combinations
of win bets as present in the bettors’ choice set. Ali (1979), Asch and
Quandt (1987), and Dolbear (1993) test the efficiency of compound
lottery markets. We believe that we are the first to use compound lottery
prices to distinguish between competing theories of possible market
(in)efficiency. Of course the idea is much older: Friedman and Savage
(1948) note that a hallmark of expected utility theory is “that the re-
action of persons to complicated gambles can be inferred from their
reaction to simple gambles” (293).

4 These papers show that it is theoretically possible to separate these explanations in
win-bet data by comparing the menus of bets offered in different races; however, com-
putational constraints force them to rely on functional form assumptions in their empirical
strategy.
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Fig. 2.—The favorite–long shot bias has persisted for over 50 years

II. Stylized Facts

Our data contain all 6,403,712 horse starts run in the United States
between 1992 and 2001. These are official Jockey Club data, the most
precise available. Data of this nature are extremely expensive, which
presumably explains why previous studies have used substantially smaller
samples. The Appendix provides more detail about the data.

We summarize our data in figure 1. We calculate the rate of return
to betting on every horse at each odds and use Lowess smoothing to
take advantage of information from horses with similar odds. Data are
graphed on a log-odds scale so as to better show their relevant range.
The vastly better returns to betting on favorites rather than on long
shots is the favorite–long shot bias. Figure 1 also shows the same pattern
for the 206,808 races (with 1,485,112 horse starts) for which the Jockey
Club recorded payoffs to exacta, quinella, or trifecta bets. Given that
much of our analysis will focus on this smaller sample, it is reassuring
to see a similar pattern of returns.

Figure 2 shows the same rate of return calculations for several other
data sets. We present new data from 2,725,000 starts in Australia from
the South Coast Database and 380,000 starts in Great Britain from
flatstats.co.uk. The favorite–long shot bias appears equally evident in
these countries, despite the fact that odds are determined by pari-mutuel
markets in the United States, bookmakers in the United Kingdom, and
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bookmakers competing with a state-run pari-mutuel market in Australia.
Figure 2 also includes historical estimates of the favorite–long shot bias,
showing that it has been stable since first noted in Griffith (1949).

The literature suggests two other empirical regularities to explore.
First, Thaler and Ziemba (1988) suggest that there are positive rates of
return to betting extreme favorites, perhaps suggesting limits to arbi-
trage. This is not true in any of our data sets, providing a finding similar
to that in Levitt (2004): despite significant anomalies in the pricing of
bets, there are no profit opportunities from simple betting strategies.

Second, McGlothlin (1956), Ali (1977), and Asch, Malkiel, and Quandt
(1982) argue that the rate of return to betting moderate long shots falls
in the last race of the day. These studies have come to be widely cited
despite being based on small samples. Kahneman and Tversky (1979)
and Thaler and Ziemba (1988) interpret these results as consistent with
loss aversion: most bettors are losing at the end of the day, and the last
race provides them with a chance to recoup their losses. Thus, bettors
underbet the favorite even more than usual and overbet horses at odds
that would eliminate their losses. The dashed line in figure 1 separates
out data from the last race; while the point estimates differ slightly, these
differences are not statistically significant. If there was evidence of loss
aversion in earlier data, it is no longer evident in recent data, even as the
favorite–long shot bias has persisted.

In the next section we argue that these facts cannot separate risk-love
from misperception-based theories. We propose new tests based on the
requirement that a theory developed to explain equilibrium odds of
horses winning should also be able to explain the equilibrium odds in
the exacta, quinella, and trifecta markets separately, as well as the equi-
librium odds in exacta and quinella markets jointly.

III. Two Models of the Favorite–Long Shot Bias

We start with two extremely stark models, each of which has the merit
of simplicity. Both are models in which all agents have the same pref-
erences and perceptions but, as we suggest below, can be expanded to
incorporate heterogeneity. Equilibrium price data cannot separately
identify more complex models from these representative agent models.

A. The Risk-Love Class

Following Weitzman (1965), we postulate expected utility maximizers
with unbiased beliefs and utility . In equilibrium, bettors mustU(7): � r �

be indifferent between betting on the favorite horse A with probability
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Fig. 3.—The win data are is completely rationalized by both classes

of winning and odds of , and betting on a long shot B withp O /1A A

probability of winning and odds of :p O /1B B

p U(O ) p p U(O ) (1)A A B B

(normalizing utility to zero if the bet is lost).5 The odds and(O , O )A B

the probabilities of horses winning, which we observe, identify(p , p )A B

the representative bettor’s utility function up to a scaling factor.6 To fix
the scale we normalize utility to zero if the bet loses and to one if the
bettor chooses not to bet. Thus, if the bettor is indifferent between
accepting and rejecting a gamble offering odds of that wins withO/1
probability p, then . Figure 3A performs precisely this anal-U(O) p 1/p
ysis, backing out the utility function required to explain all of the var-
iation in figure 1.

As can be seen from figure 3A, a risk-loving utility function is required
to rationalize the bettor accepting lower average returns on long shots,
even as they are riskier bets. The figure also shows that a constant
absolute risk aversion utility function fits the data reasonably well.

Several other theories of the favorite–long shot bias yield implications
that are observationally equivalent to this risk-loving representative

5 We also assume that, consistent with the literature, each bettor chooses to bet on only
one horse in a race.

6 See Weitzman (1965), Ali (1977), Quandt (1986), and Jullien and Salanié (2000) for
prior examples.
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agent model. Some of these theories are clearly equivalent—such as that
of Golec and Tamarkin (1998), which argues that bettors prefer skew
rather than risk—as they are theories about the shape of the utility
function. It can easily be shown that richer theories—such as that of
Thaler and Ziemba (1988), in which “bragging rights” accrue from
winning a bet at long odds, or that of Conlisk (1993), in which the mere
purchase of a bet on a long shot may confer some utility—are also
equivalent.7

B. The Misperceptions Class

Alternatively, the misperceptions class postulates risk-neutral subjective
expected utility maximizers, whose subjective beliefs are given by the
probability weighting function . In equilibrium, therep(p): [0, 1] r [0, 1]
are no opportunities for subjectively expected gain, so bettors must
believe that the subjective rates of return to betting on any pair of horses
A and B are equal:

p(p )(O � 1) p p(p )(O � 1) p 1. (2)A A B B

Consequently, data on the odds and the probabilities of(O , O ) (p , p )A B A B

horses winning reveal the misperceptions of the representative bettor.8

Note that the misperceptions class allows more flexibility in the way
probabilities enter the representative bettor’s value of a bet, but it is
more restrictive than the risk-love class in terms of how payoffs enter
that function. More to the point, without restrictive parametric as-
sumptions, each class of models is just-identified, so each yields identical
predictions for the pricing of win bets.

Figure 3B shows the probability weighting function implied byp(p)
the data in figure 1. The low rates of return to betting long shots are
rationalized by bettors who bet as though horses with tiny probabilities
of winning actually have moderate probabilities of winning. The specific

7 Formally, these theories suggest that agents maximize expected utility, where utility
is the sum of the felicity of wealth, , and the felicity of bragging rights or they(7): � r �
thrill of winning, . Hence the expected utility to a bettor with initial wealthb(7): � r �

of a gamble at odds O that wins with probability p can be expressed asw0

E(U(O)) p p[y(w � O) � b(O)] � (1 � p)y(w � 1).0 0

As before, bettors will accept lower returns on riskier wagers (betting on long shots) if
. This is possible if either the felicity of wealth is sufficiently convex or bragging′′U 1 0

rights are increasing in the payoff at a sufficiently increasing rate. More to the point,
revealed preference data do not allow us to separately identify effects operating through

rather than .y(7) b(7)
8 While we term the divergence between and p misperceptions, in non–expectedp(p)

utility theories, can be interpreted as a preference over types of gambles. Underp(p)
either interpretation our approach is valid, in that we test whether gambles are motivated
by nonlinear functions of wealth or probability. In (2) we implicitly assume that p(1) p
, although we allow .1 lim p(p) ≤ 1pr1
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shape of the declining rates of return identifies the probability weighting
function at each point.9 This function shares some of the features of
the decision weights in prospect theory (Kahneman and Tversky 1979),
and the figure shows that the one-parameter probability weighting func-
tion in Prelec (1998) fits the data quite closely.

While we have presented a very sparse model, a number of richer
theories have been proposed that yield similar implications.10 For in-
stance, Ottaviani and Sørenson (2010) show that initial information
asymmetries between bettors may lead to misperceptions of the true
probabilities of horses winning. Moreover, Henery (1985) and Williams
and Paton (1997) argue that bettors discount a constant proportion of
the gambles in which they bet on a loser, possibly because of a self-
serving bias in which losers argue that conditions were atypical. Because
long shot bets lose more often, this discounting yields perceptions in
which betting on a long shot seems more attractive.

C. Implications for Pricing Compound Lotteries

We now show how our two classes of models—while each is just-identified
on the basis of data from win bets—yield different implications for the
prices of exotic bets. As such, our approach responds to Sauer (1998,
2026), who calls for research that provides “equilibrium pricing func-
tions from well-posed models of the wagering market.” We examine
three types of exotic bets:

• exactas: a bet on both which horse will come in first and which
will come in second,

• quinellas: a bet on two horses to come in first and second in either
order, and

• trifectas: a bet on which horse will come in first, which second,
and which third (in order).

We discuss the pricing of exactas (picking the first two horses in order)

9 There remains one minor issue: as fig. 1 shows, horses never win as often as suggested
by their win odds because of the track take. Thus we follow the convention in the literature
and adjust the odds-implied probabilities by a factor of one minus the track take for that
specific race, so that they are on average unbiased; our results are qualitatively similar
whether or not we make this adjustment.

10 While the assumption of risk neutrality may be too stark, as long as bettors gamble
small proportions of their wealth, the relevant risk premia are second-order. For instance,
assuming log utility, if the bettor is indifferent over betting x percent of his wealth on
horse A or B, then

p(p ) log (w � wxO ) � [1 � p(p )] log (w � wx) pA A A

p(p ) log (w � wxO ) � [1 � p(p )] log (w � wx),B B B

which under the standard approximation simplifies to , asp(p )(O � 1) ≈ p(p )(O � 1)A A B B

in (2).
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TABLE 1
Equilibrium Pricing of Exacta Bets

Risk-Love Class
(Risk-Lover, Unbiased Expectations)

Misperceptions Class
(Biased Expectations, Risk-Neutral)

p p U(E ) p 1A BFA AB p(p )p(p )(E � 1) p 1A BFA AB

Noting from (1)p p 1/U(O) Noting from (2)p(p) p 1/(O � 1)

�1E p U (U(O )U(O )) (3)AB A BFA E p (O � 1)(O � 1) � 1 (4)AB A BFA

in detail. Prices for these bets are constructed from the bettors’ utility
function; indifference conditions, as in (1) or (2); data on the perceived
likelihood of the pick for first, A, actually winning ( or , de-p p(p )A A

pending on the class); and conditional on A winning, the likelihood of
the pick for second, B, coming in second ( or ). Table 1 beginsp p(p )BFA BFA

with the fact that a bettor will be indifferent between betting on an
exacta on horses A then B in that order, paying odds of , and notE /1AB

betting (which yields no change in wealth, and hence a utility of one),
and derives equilibrium prices of exactas under both classes.

Thus, under the misperceptions class, the odds of the exacta areEAB

a simple function of the odds of horse A winning, , and conditionalOA

on this, on the odds of B coming in second, . The risk-love class isOBFA

more demanding, requiring that we estimate the utility function. The
utility function is estimated from the pricing of win bets (in fig. 3) and
can be inverted to compute unbiased win probabilities from the betting
odds.11

Our empirical tests simply determine which of (3) or (4) better fits
the actual prices of exacta bets. We apply an analogous approach to the
pricing of quinella and trifecta bets: the intuition is the same; the math-
ematical details are described in the appendix of Snowberg and Wolfers
(2010).

Note that both (3) and (4) require , which is not directly ob-OBFA

servable. In Section IV we infer the conditional probability (andpBFA

hence and ) from win odds by assuming that bettors believep(p ) OBFA BFA

in conditional independence. That is, we apply the Harville (1973)
formula, , replacing with p in the risk-p(p ) p p(p )/[1 � p(p )] p(p)BFA B A

love class. This assumption is akin to thinking about the race for second
as a “race within the race” (Sauer 1998). While relying on the Harville

11 Our econometric method imposes continuity on the utility and probability weighting
functions; the data mandate that both be strictly increasing. Together this is sufficient to
ensure that and are invertible. As in fig. 1, we do not have sufficient data top(7) U(7)
estimate the utility of winning bets at odds greater than 200/1. This prohibits us from
pricing bets whose odds are greater than 200/1, which is most limiting for our analysis
of trifecta bets.
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formula is standard in the literature (see, e.g., Asch and Quandt 1987),
we show that our results are robust to dropping this assumption and
estimating this conditional probability, , directly from the data.pBFA

D. Failure to Reduce Compound Lotteries

As in prospect theory, the frame the bettor adopts in trying to assess
each gamble is a key issue, particularly for misperceptions-based models.
Specifically, (4) assumes that bettors first attempt to assess the likelihood
of horse A winning, , and then assess the likelihood of B comingp(p )A

in second given that A is the winner, . An alternative frame mightp(p )BFA

suggest that bettors directly assess the likelihood of first and second
combinations: .12p(p p )A BFA

There is a direct analogy to the literature on the assessment of com-
pound lotteries: does the bettor separately assess the likelihood of win-
ning an initial gamble (picking the winning horse), which yields a sub-
sequent gamble as its prize (picking the second-place horse), or does
she consider the equivalent simple lottery (as in Samuelson [1952])?
Consistent with (4), the accumulated experimental evidence (Camerer
and Ho 1994) is more in line with subjects failing to reduce compound
lotteries into simple lotteries.13

Alternatively, we could choose not to defend either assumption, leav-
ing it as a matter for empirical testing. Interestingly, if gamblers adopt
a frame consistent with the reduction of compound lotteries into their
equivalent simple lottery form, this yields a pricing rule for the mis-
perceptions class equivalent to that of the risk-love class.14 Thus, evidence
consistent with what we are calling the risk-love class accommodates
either risk-love by unbiased bettors or risk-neutral but biased bettors,
whose bias affects their perception of an appropriately reduced com-
pound lottery. By contrast, the competing misperceptions class implies
the failure to reduce compound lotteries and posits the specific form
of this failure, shown in (4).

This discussion implies that results consistent with our risk-love class
are also consistent with a richer set of models emphasizing choices over
simple gambles. These include models based on the utility of gambling,
information asymmetry, or limits to arbitrage, such as Ali (1977), Shin

12 Unless the probability weighting function is a power function ( ), theseap(p) p p
different frames yield different implications (Aczél 1966).

13 Additionally, note that (4) satisfies the compound independence axiom of Segal
(1990).

14 To see this, note that identical data (from fig. 1) are used to construct the utility and
decision weight functions, respectively, so each is constructed to rationalize the same set
of choices over simple lotteries. This implies that each class also yields the same set of
choices over compound lotteries if preferences in both classes obey the reduction of
compound lotteries into equivalent simple lotteries.
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(1992), Hurley and McDonough (1995), and Manski (2006). Any theory
that prescribes a specific bias in a market for a simple gamble (win
betting) will yield similar implications in a related market for compound
gambles if gamblers assess their equivalent simple gamble form. By im-
plication, rejecting the risk-love class substantially narrows the set of
plausible theories of the favorite–long shot bias.

IV. Results from Exotic Bets

Figure 4A shows the difference between the predictions for exactas of
the risk-love and misperceptions classes, expressed as a percentage of
the predictions. This demonstrates that the two classes of models yield
qualitatively different predictions. Exotic bets have relatively low prob-
abilities of winning, so under the risk-love class a risk penalty results,
yielding lower odds. By contrast, the misperceptions model is based on
the underlying simple lotteries, many of which suffer smaller perception
biases. The risk penalty becomes particularly important as odds get
longer; thus the difference in predictions grows along a line from the
bottom right to the top left of figure 4A.

To focus on shorter-odds bets, in table 2 we convert the predictions
into the price of a contingent contract that pays $1 if the chosen exacta
wins: . We test the ability of each class to predictPrice p 1/(Odds � 1)
the observed price by examining the mean absolute error of the pre-
dictions of both classes (col. 1). We further investigate which class pro-
duces predictions that are closer, observation by observation, to the
actual prices (col. 3). The explanatory power of the misperceptions class
is substantially greater. The misperceptions class is six percentage points
closer to the actual prices of exactas (col. 2), an improvement of 6.3/
34.3 p 18.4 percent over the risk-love class.

Figure 4B plots the improvement of the misperceptions class accord-
ing to the odds of the first- and second-place horses. When both horses
have odds of less than 10/1, which accounts for 70 percent of our data,
the average improvement of the misperceptions class over the risk-love
class is 16.8 percent. At long odds (the top and right of the figure)
there are clear patterns in the data that are not well explained by either
class, leaving room for more nuanced theories of the favorite–long shot
bias.

The second and third parts of panel A of table 2 repeat this analysis
to see which class can better explain the pricing of quinella and trifecta
bets. The intuition is similar in all three cases. Each test, across all three
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parts, shows that the misperceptions class fits the data better than the
risk-love class.15

Relaxing the assumption of conditional independence.—Recall that we ob-
serve all the inputs to both pricing functions except , the odds ofOBFA

horse B finishing second, conditional on horse A winning. Above we
used the Harville formula, which rests on the convenient assumption
of conditional independence, to assess the likely odds of this bet. Gen-
erally, this provides a reasonable approximation of and, thus, usingpBFA

(1) and (2), . However, nonparametric techniques provide a betterOBFA

fit.
As a robustness check of the results in panel A of table 2, we now

use nonparametrically estimated probabilities . That is, rather thanpBFA

inferring (and hence and ) from the Harville formula,p p(p ) OBFA BFA BFA

we simply apply empirical probabilities estimated directly from the data.
That is, our estimate of reflects how frequently horses with odds ofpBFA

winning actually run second in races in which the winner had oddsOB

. This probability is estimated using the nonparametric, multidimen-OA

sional Lowess procedure of Cleveland, Devlin, and Grosse (1988). We
implement this exercise in panel B of table 2, calculating the price of
exotic bets under the risk-love and misperception classes, but adapting
our earlier approach so that is derived from the data.16pBFA

The results in panel B of table 2 are almost identical to those in panel
A. For exacta, quinella, and trifecta bets, the misperceptions class has
consistently greater explanatory power than the risk-love class.

V. Simultaneous Pricing of Exactas and Quinellas

Our final test of the two classes of theories relies on the relative pricing
of exacta and quinella bets and is more stringent as it considers these
bets simultaneously. As before, we derive predictions from each class,
and the predictions of the misperceptions class more closely match the
data. However, the predictions of the risk-love class exhibit a perverse
negative correlation with the data, requiring a more detailed expla-
nation.

Deriving predictions.—The exacta AB (which represents A winning and

15 We have also rerun these tests a number of other ways to test for robustness. Our
conclusions are unaltered by whether or not we weight observations by the size of the
betting pool; whether we drop observations in which the classes imply very long odds;
whether or not we adjust the classes in the manner described in n. 8; and different
functional forms for the price of a bet, including the natural log price of a $1 claim, the
odds, or log odds.

16 Because the precision of our estimates of varies greatly, weighted least squares,pBFA

weighted by the product of the squared standard error of and , might be appropriate.p pBFA A

Additionally, we tried estimating without using Lowess smoothing. These approachespBFA

produced qualitatively identical results.
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B coming in second) occurs with probability ; the BA exactap # pA BFA

occurs with probability . By definition, the corresponding qui-p # pB AFB

nella pays off when the winning exacta is either AB or BA and hence
occurs with probability . Each model yields uniquep # p � p # pA BFA B AFB

implications for the relative prices of the winning exacta and quinella
bets and thus unique predictions for

p pA BFA . (5)
p p � p pA BFA B AFB

This is also the probability that horse A wins given that A and B are the
top two finishers.

Table 3 begins by considering the AB exacta at odds of and theE /1AB

corresponding quinella at . Equations (10) and (11) show that forQ /1
any pair of horses at win odds and with quinella oddsO /1 O /1A B

, each class has different implications for how frequently we expectQ /1
to observe the AB exacta winning, relative to the BA exacta. That is,
each class gives distinct predictions about how often a horse with win
odds will come in first, given that horses with win odds andO /1 O /1A A

are the top two finishers.O /1B

What do the data say?—As a first test, we regress an indicator for whether
the favorite out of horses A and B actually won—given that horses A
and B finished first and second—on the predictions of each model.17

In this simple specification, the misperceptions class yields a robust and
significant positive correlation with actual outcomes (coefficient p 0.63;
standard error p 0.014, ), and the risk-love class is negativelyn p 60,288
correlated with outcomes (coefficient p �0.59; standard error p 0.013,

).n p 60,288
Note that (10) and (11) also yield distinct predictions of the winning

exacta even within any set of apparently similar races (those whose first
two finishers are at and with the quinella paying ). Thus,O /1 O /1 Q /1A B

we can include a full set of fixed effects for , , and Q and theirO OA B

interactions in our statistical tests of the predictions of each class.18 The
residual after differencing out these fixed effects is the predicted like-
lihood that A beats B, relative to the average for all races in which horses
at odds of and fill the quinella at odds . That is, for allO /1 O /1 Q /1A B

races we compute the predictions of the likelihood that the exacta with
the relative favorite winning (AB) occurs and subtract the baseline

cell mean to yield the predictions for each class of model,O # O # QA B

relative to the fixed effects. The results, summarized in figure 5, are

17 In the rare event in which horses A and B had the same odds we coded the indicator
as 0.5.

18 Because the odds , , and Q are actually continuous variables, we include fixedO OA B

effects for each percentile of the distribution of each variable (and a full set of interactions
of these fixed effects).
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Fig. 5.—Predicting the winning exacta within a quinella: the proportion in which the
favored horse beats the long shot, relative to the baseline. The chart shows model pre-
dictions from (3) and (4) and actual outcomes relative to a fixed-effect region baseline.
For the first-two finishing horses the baseline controls for (a) the odds of the favored
horse, (b) the odds of the long shot, (c) the odds of the quinella, and (d) all interactions
of a, b, and c. The plot shows model predictions after removing fixed effects, rounded to
the nearest percentage point, on the x-axis and actual outcomes, relative to the fixed
effects, on the y-axis.

remarkably robust to the inclusion of these multiple fixed effects (and
interactions): the coefficient on the misperceptions class declines
slightly, and insignificantly, whereas the risk-love class maintains a sig-
nificant but perversely negative correlation with outcomes. It should be
clear that this test, by focusing only on the relative rankings of the first
two horses, entirely eliminates parametric assumptions about the race
for second place.

Explaining the negative correlation.—Two factors create the perverse neg-
ative correlation between the predictions of the risk-love class and the
data. First, when the winning quinella is made up of two horses with
not too dissimilar odds, the risk-love class predicts that the relative fa-
vorite will win with less than a one-half probability whenever it wins and
predicts that the relative favorite will win with greater than a one-half
probability whenever it loses. Second, as most winning quinellas (and
exactas) feature horses with not too dissimilar odds, most of the data
are from this range as well, leading to the observed negative correlation.

We discuss the data as if they were generated by misperceptions and
explain the resulting negative correlation by emphasizing how the pre-
dictions of the risk-love class deviate from misperceptions. To fix ideas,
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consider the case in which the relative favorite, A, has win odds of 4/
1 and the relative long shot, B, has win odds of 9/1. The data give
average exacta odds and and average quinellaE p 39/1 E p 44/1AB BA

odds . These data agree extremely closely with the predictionsQ p 20/1
of the misperceptions class, so when (11) is applied to data from such
a race, it makes accurate predictions about .19p p /(p p � p p )A BFA A BFA B AFB

A risk-loving bettor is willing to pay a premium for riskier bets; that
is, he is willing to accept lower odds than a risk-neutral bettor as prob-
abilities of winning become small. Figure 1 shows that under the risk-
love class, an exacta bet at odds has a large risk premium.20E p 39/1AB

However, the same figure shows that the rate of return from bets on A
and B (with odds of 4/1 and 9/1, respectively) is close to the average
rate of return on all bets, implying no risk premium in bets on either
horse individually. Thus, according to the misperceptions class (as ex-
pressed in [4]), there is no risk premium in the observed odds .EAB

The difference between the risk-love class and the data, namely, that
the risk-love class infers there is a risk-premium built into ,E p 39/1AB

leads the risk-love class to predict that AB will occur with a lower than
actual probability. Specifically, according to the data underlying figure
1, a risk-loving bettor is willing to accept odds of 39/1 for a bet that
wins only one out of 54 times. In contrast, if there was no risk premium,
the bet would have odds of 53/1. Conversely, when the risk-lover is told
an exacta has odds , he believes that it has only a one in 54E p 39/1AB

chance of winning. Or, to put this another way, when the risk-love class
is given an exacta with odds , it predicts that the numeratorE p 39/1AB

of (5), , is 0.018 when the probability in the data is much closerp pA BFA

to 0.025.
The inferred risk premium is much lower for the quinella than for

the exacta, which leads the risk-love class to predict a less than 50 percent
chance that the relatively favored horse A will finish first out of A and
B. Specifically, as shown in figure 1, the rate of return at isQ p 20/1
close to the average, implying almost no risk premium. Thus, the risk-
love model will predict the denominator of (5), , well atp p � p pA BFA B AFB

0.046. However, as shown in the previous paragraph, the prediction for
the numerator of (5) is too small, leading to a prediction that A will
win ∼40 percent of the time if A and B are the top two finishers. But
A is the favorite of the two horses ( ) andO /1 p 4/1 ! 9/1 p O /1A B

finishes before B ∼60 percent of the time.
If, instead, the relative long shot B wins, the exacta isE p 44/1BA

19 We adjust figures in this example slightly so that the discussion can ignore the track
take. See n. 8 for more on the analytical treatment of the track take.

20 The use of the term risk premium here differs slightly from standard usage, where
risk premium refers to the higher payoff risk-averse agents will need to accept a risky bet.
Here risk-loving agents are willing to pay a premium for a riskier bet.
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observed, which leads the risk-love class to predict that there is a lower
than 50 percent chance that B wins given that A and B are the top two
finishers. Applying the logic above, the risk-love class infers that this
price incorporates an even larger risk premium and thus assigns a lower
probability to this exacta than to . In turn, this means thatE p 39/1AB

it yields a low probability of horse B coming in first, given that A and
B are the top two finishers. However, the risk-love class will make this
prediction only when exacta is observed, that is, when horse B ac-EBA

tually wins the race.
When the left-hand side of the regression that began this discussion

takes a value of one, indicating that horse A has won out of A and B,
the right-hand side takes a value of 0.4, indicating that the risk-love
model predicts a 40 percent chance of A’s victory. Conversely, when the
left-hand side is zero, indicating that A has lost, the right-hand side takes
a value of 0.65.

Taken together, these two cases imply that there is a negative corre-
lation between the predictions of the risk-love class and the data when
the odds of the top two finishers are and . Moreover, the in-4/1 9/1
tuition extends to any case in which the odds of the first two horses are
not too dissimilar, which describes almost all the races in our data set.
When the odds of the first two horses are more dissimilar, for example,

and , then both models correctly predict that the 1/1 horse1/1 100/1
will almost always win. However, such finishes are so rare that they have
almost no impact on the analysis, resulting in the observed negative
correlation.

Summary.—The risk-love class fails here because it insists that the same
risk premium be priced into all bets of a given risk, regardless of the
pool from which the bets are drawn. Yet exotic bets with middling risk—
relative to the other bets available in a given pool—do not tend to attract
large risk penalties, even if those bets would be very risky relative to
bets in the win pool (Asch and Quandt 1987).

These tests show that a model from the risk-love class that accounts
for the pricing of win bets yields inaccurate implications for the relative
pricing of exacta and quinella bets. By contrast, the misperceptions class
is consistent with the pricing of exacta, quinella, and trifecta bets and,
as this section shows, also consistent with the relative pricing of exacta
and quinella bets. These results are robust to a range of different ap-
proaches to testing the theories.

VI. Conclusion

Employing a new data set that is much larger than those in the existing
literature, we document stylized facts about the rates of return to betting
on horses. As with other authors, we note a substantial favorite–long
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shot bias. The term bias is somewhat misleading here. That the rate of
return to betting on horses at long odds is much lower than the return
to betting on favorites simply falsifies a model in which bettors maximize
a function that is linear in probabilities and linear in payoffs. Thus, the
pricing of win bets can be reconciled by a representative bettor with
either a concave utility function or a subjective utility function employ-
ing nonlinear probability weights that violate the reduction of com-
pound lotteries. For compactness, we referred to the former as explain-
ing the data with risk-love, whereas we refer to the latter as explaining
the data with misperceptions. Neither label is particularly accurate since
each category includes a wider range of competing theories.

We show that these classes of models can be separately identified using
aggregate data by requiring that they explain both choices over betting
on different horses to win and choices over compound bets: exactas,
quinellas, and trifectas. Because the underlying risk or set of beliefs,
depending on the theory, is traded in both the win and compound
betting markets, we can derive unique testable implications from both
sets of theories. Our results are more consistent with the favorite–long
shot bias being driven by misperceptions rather than by risk-love. In-
deed, while each class is individually quite useful for pricing compound
lotteries, the misperceptions class strongly dominates the risk-love class.
This result is robust to a range of alternative approaches to distinguish-
ing between the theories.

This bias likely persists in equilibrium because misperceptions are not
large enough to generate profit opportunities for unbiased bettors. That
said, the cost of this bias is also very large, and debiasing an individual
bettor could reduce his or her cost of gambling substantially.

Appendix

Data

Our data set consists of all horse races run in North America from 1992 to 2001.
The data were generously provided to us by Axcis Inc., a subsidiary of the Jockey
Club. The data record the performance of every horse in each of its starts and
contain the universe of officially recorded variables having to do with the horses
themselves, the tracks, and race conditions.

Our concern is with the pricing of bets. Thus, our primary sample consists
of the 6,403,712 observations in 865,934 races for which win odds and finishing
positions are recorded. We use these data, subject to the data-cleaning restric-
tions below, to generate all figures. We are also interested in pricing exacta,
quinella, and trifecta bets and have data on the winning payoffs in 314,977,
116,307, and 282,576 races, respectively. The prices of nonwinning combinations
are not recorded.

Owing to the size of our data set, whenever observations were problematic,
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we simply dropped the entire race from our data set. Specifically, if a race has
more than one horse owned by the same owner, rather than deal with coupled
runners, we simply dropped the race. Additionally, if a race had a dead heat
for first, second, or third place, the exacta, quinella, and trifecta payouts may
not be accurately recorded, and so we dropped these races. When the odds of
any horse were reported as zero, we dropped the race. Further, if the odds across
all runners implied that the track take was less than 15 percent or more than
22 percent, we dropped the race. After these steps, we are left with 5,606,336
valid observations on win bets from 678,729 races, and 1,485,112 observations
from 206,808 races include both valid win odds and payoffs for the winning
exotic bets.
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