"The Simple Economics of Extortion: Evidence from Trucking in Acheh"

Comments on Olken & Barron by Justin Wolfers, Wharton & NBER

NBER Economics of Crime Working Group Inaugural meeting, September 13 2007

The Research Innovation

Observe actual bribes in the field

Understanding the context

Primer on Indonesian Trucking

Corrupt institutions

- Military checkpoints
 - Officially for safety / security
 - Actually for collecting "tolls"
- Weighing stations (2 on each road)
- Protection payments
 - Sometimes to travel as part of a protected (military) convoy
- Shocks
 - Peace agreement in Aceh ⇒ 60% of military withdrawn
 - Reducing #military checkpoints (had already occurred in Banda Aceh)
 - Olken & Barron study "goes public"

Data collection

- Achenese surveyors accompanied drivers on 282 trips
 - Truck data: Expenditures; weight; cargo
 - Checkpoint data: Police / army; #officers; presence of guns
 - Bribe data: Time; location; \$ paid
 - Yields different results than driver interviews
 - Hawthorne effects unlikely

Impact of Military Withdrawal in Aceh on Bribes in North Sumatra

Green line = #troops in Aceh Dashed line = Olken press conference

Impact of Military Withdrawal in Aceh: Both Routes

Econometrics: Impact of Checkpoints in Aceh on Bribes in North Sumatra

- Exploit time series variation due to troop movements out of Aceh
- Checkpoint-trip observations \Rightarrow Average price regression: $Log(Price in North Sumatra_{c,t}) = \beta Log(Expected posts_{c,t})$
 - <u>Controls</u>: Include checkpoint fixed effects
 - Cluster standard errors in two dimensions: trip; checkpoint
- Trip observations ⇒ Total payments regression: Log(Total bribes in North Sumatra_t) = β Log(Expected posts_t)
 - Newey-West standard errors
- Log(Expected posts) isolates variation from Aceh only
 - Mean #checkpoints in Aceh in two-week period (exc. this trip)
 - Mean #checkpoints in North Sumatra over whole sample (no variation)
 - \Box Can IV Expected posts using Log(Troops_i)
 - □ Possible control group: Banda Aceh route (\Rightarrow Diff-in-diff ID's common trends)
 - Both specifications live off time-series variation only
- Theory
 - Centralized price fixing: β=-1
 - Independent (naïve / non-rational) pricing: β=0

Impact of Military Withdrawal on Bribes

Table 2: Impact of number of checkpoints in Aceh on bribes in North Sumatra						
	(1)	(2)	(3)	(4)	(5)	
	OLS	OLS	OLS	IV	OLS	
Panel A: Log average paymen	nt at checkpoint					
Log expected checkpoints	-0.545***	-0.580***	-0.684***	-0.788***	-0.808***	
on route	(0.157)	(0.167)	(0.257)	(0.217)	(0.196)	
Sample	Meulaboh	Meulaboh	Meulaboh	Meulaboh	Both Routes	
-			Pre-Press			
			Conf.			
Truck controls	No	Yes	Yes	Yes	Yes	
Common time effects	None	None	None	None	Cubic	
Observations	1941	1720	1069	1720	2715	
Test elas = 0	0.00	0.00	0.01	0.00	0.00	
Test elas = -1	0.00	0.01	0.22	0.33	0.33	
Panel B: Log total payments						
Log expected checkpoints	-0.736***	-0.695***	-0.643***	-0.782***	-1.107**	
on route	(0.064)	(0.069)	(0.237)	(0.131)	(0.444)	
Sample	Meulaboh	Meulaboh	Meulaboh	Meulaboh	Both Routes	
			Pre-Press			
			Conf.			
Truck controls	No	Yes	Yes	Yes	Yes	
Common time effects	None	None	None	None	Cubic	
Observations	161	144	90	144	249	
Test elas = 0	0.00	0.00	0.01	0.00	0.01	
Test elas = -1	0.00	0.00	0.14	0.10	0.81	

Reject both straw men: Pricing neither centralized nor naïve.

Serious Econometric Concern

- Interested in isolating variation in *Expected Posts* from Aceh only
- E[Expected Posts] = E[Posts_{Aceh}] + E[Posts_{North Sumatra}]
 - $E[Posts_{North Sumatra}] = \gamma_{NS} * Full sample mean$
 - $E[Posts_{Aceh}] = \gamma_{Aceh} * Average posts in Aceh over two week period$
 - Imposes $\gamma_{NS} = \gamma_{Aceh} = 1$
- But by shrinkage principle: $\gamma_{Aceh} < 1$
 - If any noise or measurement in two-week average
 ⇒ BLUE estimator attenuates by signal-to-noise ratio
- Easy fix: IV
 - First stage regression: $Posts_{Aceh} = \gamma_{Aceh} * Average posts in Aceh$
 - Existing IV regression don't deal with this re-scaling issue
 - Current first stage: $Log(1*Posts_{N.Sumatra} + 1*Posts_{Aceh}) = \delta Log(Troops_{Aceh})$
- Implications:
 - Olken-Barron estimate is the reduced-form
 - Wald estimator = Olken estimates / γ_{Aceh}
 - Results likely to support (or fail to reject) centralized model

Exploiting Variation in Timing of Withdrawals

- Each trip passes through ten police/military districts
 - Exploit variation across space in timing of withdrawal in Aceh
- Trip*district observations \Rightarrow Total payments regression: $Log(Payments_{d,i}) = \beta Log(Expected posts_{d,t})$
 - ▶ Allows: Trip fixed effects ⇒ No longer living off agg. time series variation
 - District fixed effects (and district*direction)

rable 5. Impact of number of checkpoints on total payments in district
--

	(1)	(2)	(3)	(4)	
	OLS	IV (troops)	OLS	IV (troops)	
Log expected checkpoints in	0.663***	1.522***	0.586***	0.786**	
District	(0.081)	(0.390)	(0.082)	(0.359)	
Sample	Meulaboh	Meulaboh	Both Routes	Both Routes	
Observations	1090	1026	1435	1363	
Test elas = 0	0.00	0.00	0.00	0.03	
Test elas = 1	0.00	0.18	0.00	0.55	

- Dependent variable now: Payments in a district | Trip_i
 - Measures allocation of bribes within a trip, not overall level of bribes
 - Centralized corruption within districts: $\beta = 0$
 - Non-rational pricing: $\beta \ge 1$

Some Theory and a Question: What has been falsified?

Welfare Implications

- "Policy shock"
 - Before sample: 90 checkpoints per trip
 - After withdrawal: 18 checkpoints per trip ($\Delta n = \sqrt{80\%}$)
- Pricing implications
 - Elasticity of average price per checkpoint to #checkpoints ≈ -0.55
 - Elasticity of total bribes to #checkpoints = 1-0.55 = 0.45 $\Rightarrow \Delta bribes \sqrt{51\%}$

Quantity implications

- Price elasticity of demand for fuel \approx -0.1
- Convert ∆bribes to equivalent fuel surcharge
- Trucking increases 1.2% (from about 6,000 trips per month)
- Welfare implications
 - Deadweight loss fell by \$28,000
 - Redistribution of \$1.6m
- Are these welfare implications dependent on market structure?
 - Key parameter is on the demand side (trucking is inelastic)
 - If prices centralized $\Rightarrow \Delta bribes = 0$
 - ▶ If prices naively exogenous $\Rightarrow \Delta$ bribes $\sqrt{80\%}$
 - If policy changes industrial organization of sector (destroys centralization)...

Evidence of hold-up

Figure 4: Payments by percentile of trip

 $\begin{array}{l} Exploit trips in both directions \\ Log(Price_{c,i}) = \beta \ Checkpoints \ passed \\ + \ trip \ fixed \ effects \\ + \ checkpoint*month \ fixed \ effects \end{array}$

1	0 0	81
	(1)	(2)
Mean percentile	0.145***	-0.178
	(0.045)	(0.225)
Sample	Meulaboh	Banda Aceh
Observations	4190	1089

Table 5: Sequential bargaining and increasing prices

Bargaining versus Fixed Prices

Factors may increase bargaining power:

- Is the officer carrying a gun?
- How many officers are visible?
- Does this affect:
 - Amount paid
 - Probability of negotiation over payment

Table 4: Bargaining vs. fixed prices

	(1)	(2)	
Gun visible	Log Payment 0.166*** (0.056)	Negotiate dummy 0.042*** (0.015)	Controlling for:Trip fixed effects
Number of people at	0.047***	0.017***	•Checknoint*month*direction
Checkpoint	(0.009)	(0.004)	checkpoint month uncetion
Observations	5260	5281	
Mean dep. Var	8.49	0.13	

What is the (implicit) labor supply model here?

Evidence of Third Degree Price Discrimination

Checkpoints:

Price varies with truck and cargo characteristics

Figure 4: Price discrimination on observable characteristics Truck age Log cargo value per tor

Weighing Stations:

Price varies with potential fine

Not socially efficient

Figure 5: Payments at Gebang weigh station

Evidence of 2nd degree price discrimination

Menu of two-part tariffs

A. Arrive at weigh station

*Price=18.50+1.20*max(w-10,0)*

B. Pre-purchase datestamped coupon

Coupon = \$16.30

Fixed bribe = \$5.50

Crossing point at 16 tons

What's Missing?

- Where is the supply side?
 - Prices and profitability change => Why don't we see entry?
- Where is the criminal justice system?
- Investments in bargaining power
- What is being falsified?
 - Centralization of price setting
 - Monopolist sets prices where elasticity of demand = -1
 - Only collect tolls in one location
 - Decentralized price-setting
 - I ≤ Price elasticity of demand ≤0
 - "Exogenous" prices is a straw man
 - What model generates pricing where elasticity = 0?
- What is generalizable?
 - Jakarta-Bandung road: Payments are monthly

Conclusions (Broad and overstated)

- Shleifer and Vishny were right
 - > The industrial organization of corruption shapes its impacts
 - First-order implications for welfare analysis
 - Important policy impacts
- "New empirical IO" versus "New new empirical IO"
 - Alternatively: "Beckerian IO"
 - This paper: Industrial organization of corruption
 - Big question
 - Policy implications
 - Interesting(!)
 - Written within a year of the experiment
 - Emerging theme in economics: Industrial organization of important things:
 - Political economy
 - Media
 - Crime
 - Marriage market

Some fun themes

Primary data collection can be tough

• "Due to the clandestine nature of the survey, and the military occupation underway when the survey began..."

But it is important

• "on average the bribes drivers reported in interviews were more than double the amount of the bribes we recorded by direct observation"