Comments on Olivier Coibion & Yuriy Gorodnichenko's "What can survey forecasts tell us about informational rigidities?"

Justin Wolfers

Wharton School, University of Pennsylvania CEPR, CESifo, IZA and NBER

NBER Monetary Economics Fall Meeting, Cambridge, November 13 2008.

What does this paper do?

Research question

- "a new set of stylized facts about... expectations formation"
 - "do agents have full information"
 - "how do we model their information problem?"
- "Unlike the previous literature, we study the conditional responses of forecast errors and forecast dispersion to identified structural shocks."
 - Contrast with Mankiw ,Reis and Wolfers
- Approach: Assess impulse response functions
 - Average expectations <u>and</u> dispersion (disagreement)
 - As measured three ways (Michigan survey; SPF; Blue Chip)
 - In response to "identified" macro shocks: Monetary, technology, oil, info, confidence, fiscal

Imperfect info

- Forecasts under-react to shocks in the short run, but not in the long run
- Convergence rate of forecast 2. Convergence rate of errors may differ across shocks
 - Depends on how you learn about diff shocks
- Dispersion of forecasts doesn't change after a shock
 - Or, indeed, ever

Sticky info

- Forecasts under-react to shocks in the short run, but not the long run
- forecast errors is common across shocks
 - Depends on state- versus time-dependent updating
- Dispersion of forecasts 3. rises after a shock
 - And only after shocks

Finding #1: Inflation expectations are unrelated to identified macro shocks

■ A monetary shock affects inflation:

■ But inflation expectations are unmoved:

But authors emphasize: No effect on forecast error

Apparently no effect of monetary shocks on forecast error

■ But shocks affect inflation, and not its forecast?

Justin Wolfers, Comments on Informational Rigidities

The problem with the forecast error equations

"Structural" inflation and expectation equations

Past inflation Past forecasts Structural shocks
$$\pi_t = \sum_{i=1}^{I} \alpha_i \pi_{t-i} + \sum_{j=0}^{J} \beta_j F_{t-j} \pi_{t-j+4} + \sum_{k=0}^{K} \gamma_k \mathcal{E}_{t-k}$$

$$F_{t-4} \pi_t = \sum_{i=4}^{I} a_i \pi_{t-i} + \sum_{j=4}^{J} b_j F_{t-j-1} \pi_{t-j} + \sum_{k=4}^{K} c_k \mathcal{E}_{t-k}$$

Yielding forecast errors

$$\pi_{t} - F_{t-4}\pi_{t} = \sum_{i=1}^{3} \alpha_{i}\pi_{t-i} + \sum_{j=0}^{3} \beta_{j}F_{t-j}\pi_{t-j+4} + \sum_{k=1}^{3} \gamma_{k}\mathcal{E}_{t-k}$$

$$+ \sum_{i=4}^{I} (\alpha_{i} - a_{i})\pi_{t-i} + \sum_{j=4}^{J} (\beta_{j} - b_{j})F_{t-j}\pi_{t-j+4} + \sum_{k=4}^{K} (\gamma_{k} - c_{k})\mathcal{E}_{t-k}$$

■ But they estimate:

$$\pi_{t} - F_{t-h}\pi_{t} = c + \sum_{i=1}^{I} \beta_{i}(\pi_{t-i} - F_{t-i-h}\pi_{t-i}) + \sum_{j=0}^{J} \gamma_{j}\varepsilon_{t-j}^{k} + \nu_{t}$$

□ Imposing:

$$\alpha_i = -\beta_i$$
 for $i = 1, 2, 3$ and $\alpha_i - \alpha_i = -(\beta_i - b_i)$ for $i \ge 4$

What if we drop this constraint?

□ Impulse response function of forecast errors=

Finding #2: Disagreement is unrelated to "structural" shocks

Figure 5: Response of Forecast Dispersion to Baseline Shocks

Reconciling two papers

Mankiw, Reis and Wolfers

- Average inflation expectations
 - Inflation expectations reflect partial, but incomplete adjustment to news
- Dispersion in inflation expectations
 - There exists substantial disagreement about future inflation
 - Disagreement varies through time
 - Disagreement covaries with macroeconomic conditions

Coibion and Gorodnichenko

- Average inflation expectations
 - Do not respond to "structural shocks"
- Dispersion in inflation expectations
 - Does not vary with "structural shocks"

Differences

- Sample periods
- Analyzing impulse response functions v. all the variation
- Minor technical stuff (mean v. median; IQR v. SD)

Average inflation expectations

Panel A: Mean Forecasts of Inflation over Next Year

Weak & Semi-Strong Tests of Rationality

	Michigan	Michigan- Experimental	Livingston	SPF (GDP Deflator)
Panel C: Are Foreca	sting Errors Per			
	+ β (π_{t-12} - $E_{t-24}\pi_{t-12}$)			
β: π_{t-12} - E_{t-24} [π_{t-12}]	0.371**	.580****	0.490***	0.640***
	<mark>(.158)</mark>	(.115)	(.132)	<u>(.224)</u>
α: Constant	0.096%	0.005%	0.302%	032%
	(.183)	(.239)	(.210)	(.223)
Adj. R ²	.164	.334	.231	.375
Panel D: Are Macro	economic data fi	ully exploited?		
	$\alpha + \beta \mathbf{E}_{t-12} [\pi_t] + \gamma \pi_t$	_		
α: Constant	-0.816%	0.242%	$4.424\%^{***}$	3.566%***
	(.975)	(1.143)	(.985)	(.970)
β : $\mathbf{E}_{\text{t-12}}\left[\pi_{\text{t}}\right]$	0.801***	-0.554***	0.295	0.287
	(.257)	(.165)	(.283)	(.308)
γ : Inflation _{t-13}	-0.218*	0.610***	0.205	0.200
	(.121)	(.106)	(.145)	(.190)
к: Treasury Bill _{t-13}	-0.165**	-0.024	-0.319***	-0.321***
	(.085)	(.102)	(.106)	(.079)
δ: Unemployment _{t-13}	0.017	-0.063	-0.675***	-0.593***
	(.126)	(.156)	(.175)	(.150)
Joint Test on Macro	$F_{3,285}=2.65^{**}$	$F_{3,164}=15.84^{***}$	$F_{3,91} = 8.29^{***}$	$F_{3,120}=11.65^{\circ\circ\circ}$
Data $(\gamma = \kappa = \delta = 0)$				
Adj. R ²	.293	.382	.306	.407

Distribution of Inflation Rates Across CPI Components

Weighted percentiles, based on 36 CPI component indices

Coibion and Gorodnichenko sample

Panel B: (Log) Cross-sectional Standard Deviation of Inflation Forecasts over Next Year

Disagreement Over the Business Cycle-Consumers

Dependent Variable: Dispersion in Inflation Expectations (Interquartile Range)

	Bivariate	Controlling for	Multivariate	
	Regressions	inflation	Regression	
Panel A: Michigan Dat	a			
Inflation Rate	0.441***		0.408***	
	(.028)		(.028)	
ΔInflation-squared	18.227***	10.401***	7.062***	
	(2.920)	(1.622)	(1.364)	
Output Gap	0.176	0.415***	0.293***	
	(.237)	(.088)	(.066)	
Panel B: Michigan - Experimental				
Inflation Rate	0.228***		0.217***	
	(.036)		(.034)	
∆Inflation-squared	1.259**	0.814	0.789	
_	(.616)	(.607)	(.598)	
Output Gap	-0.047	0.026	0.017	
	(.092)	(.086)	(.079)	

Disagreement Over the Business Cycle-Economists

Dependent Variable: Dispersion in Inflation Expectations	
(Interquartile Range)	

(Interquartile Range)					
	Bivariate	Controlling for	Multivariate		
	Regressions	inflation	Regression		
Panel C: Livingston St	ırvey				
Inflation Rate	0.083***		0.066***		
	(.016)		(.013)		
∆Inflation-squared	2.682***	2.051***	1.663**		
_	(.429)	(.483)	(.737)		
Output Gap	0.070^{**}	-0.062**	0.020		
	(.035)	(.027)	(.032)		
Panel D: Survey of Pro	ofessional Forecaste	rs (GDP deflator)			
Inflation Rate	0.092***		0.095***		
	(.013)		(.015)		
∆Inflation-squared	2.292**	-0.406	-0.305		
•	(.840)	(.641)	(.676)		
Output Gap	-0.001	-0.009	-0.007		
_ -	(.029)	(.013)	(.014)		

Using all the variation

- Why focus on only the "identified" shocks?
- □ <u>All</u> variation in expectations must be driven by
 - Identified shocks
 - Unidentified shocks
 - And their dynamic consequences

Mankiw, Reis and Wolfers approach

- \square Set $\lambda = 0.1$
 - Update expectations, on average, about every 10 months
- When updating:
 - Analyze time series of inflation, output gap and short-term interest rates
 - Apply coefficients from a simple monthly VAR $\{\pi, Y^{gap}, i\}$
 - Yields a predicted series for the evolution of the full distribution of inflation expectations

Actual and Predicted Median Inflation Expectations

Actual and Predicted Dispersion

Inflation Expectations Through the Volcker Disinflation

Probability Distribution Function: Consumers' Expectations

Inflation Expectations Through the Volcker Disinflation

Probability Distribution Function Predicted by Sticky Information Model

Coibion & Gorodnichenko's Conclusions

- ☑ Forecasts fail to adjust one-for-one with the variable being forecasted after structural shocks.
 - Yielding serially correlated conditional forecast errors
 - But they actually find forecasts barely adjust at all
- Forecast errors converge to zero in the long-run
 - Probably true
 - But convergence is surely slower than suggested by these estimates
- Conditional forecast errors converge at similar rates across agents
 - Is this a precise estimate?
- Structural shocks do not appear to lead to any discernible increase in disagreement
 - Difficult to reconcile with clear business-cycle variation in disagreement.