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1 Introduction

The US subprime mortgage delinquencies in the late 2000’s formed the foundations

of the Great Recession in the US. Although the crisis began in the US, the shock

spread globally to a wide range of markets and countries, with a clear channel of the

shock transmission arising through the subsequent impact on the interbank markets.

The popular term first coined by Goldstein (1998) describing the phenomenon of the

transmission of a crisis from a crisis affected market to others is financial market conta-

gion. Contagion models are based on identifying significant changes in the dependence

structures between financial asset returns during financial crisis compared to non-crisis

times. Using a Bayesian approach, this paper builds on Hamilton (1989) by develop-

ing a regime-switching skew-normal (RSSN) model of crisis and contagion, mainly by

relaxing the assumption of the error term which is assumed here to be a multivari-

ate skew-normal distribution. The framework is able to simultaneously measure five

different linear and non-linear channels of financial market crisis and contagion trans-

mission, and nine different joint channels of financial market crisis and contagion, and

the paper includes an illustrative application to the Great Recession period.

The RSSN framework for detecting financial market crisis and contagion is able to

circumvent several econometric problems evident in the contagion literature. First, the

framework avoids the sole use of conventional dependence measures such as the Pearson

correlation coeffi cient or adjusted correlation coeffi cients in testing for contagion as is

the case in the earliest literature (King and Wadhwani, 1990; Forbes and Rigobon,

2002). The correlation coeffi cient method compares an exogenously defined non-crisis

period correlation with an exogenously defined crisis period correlation to determine

significant changes in the dependence (namely, contagion) between markets.1 In the

framework of multivariate Gaussian distributions, correlation provides an appropriate

linear dependence structure. However, it is well accepted that financial market returns

are not normally distributed. This class of contagion tests may deliver partial or limited

information on the actual underlying dependence of asset returns during extremely bad

events (Embrechts et al. 2001b). The framework of the RSSN model allows for both

linear and non-linear dependence.

1As Dungey and Zhumabekova (2001) and Billio and Pelizon (2003) emphasize, the power of test
statistics of contagion can be seriously affected by large difference in sample sizes between tranquil
and crisis period, and statistics for contagion are usually sensitive to the definition of crisis periods in
particular.
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There do exist a range of alternative approaches of testing for contagion that go

beyond the linear approach. Several papers focus on higher order co-moments of the re-

turns distribution (i.e. non-linear parameters) instead of using a multivariate Gaussian

distribution with a constant linear correlation structure.2 For example: Longin and Sol-

nik (2001) derive a distribution of extreme correlation based on extreme value theory;

Favero and Giavazzi (2002) test for non-linearities in the propagation of devaluation

expectations; Bae et al. (2003) use extreme value theory to model the joint behavior of

extremal realizations (co-exceedances); Pesaran and Pick (2007) identify outliers in a

structural model to examine the threshold tests of contagion; Fry et al. (2010) develop

a portfolio model of higher order moments with asymmetric dependence (co-skewness);

and Hsiao (2012) explores portfolio choice with extremal dependence (co-kurtosis and

co-volatility). Although these works extend the Forbes and Rigobon linear model by

including non-linear co-moments (asymmetric, extremal and tail dependencies), none

of them simultaneously test for a range of linear and non-linear channels in the same

model. This is the second contribution of this paper.

There are a handful of papers which use regime switching models with second

order moments and co-moments to measure market relationships. Ang and Bekaert

(2002) explore time-varying correlations and volatilities for portfolio choice, Pelletier

(2006) allows switching in the correlation structure, and Gravelle, Kichian and Morley

(2006) include time varying volatility; Billio et al. (2005) and Kasch and Caporin

(2013) include time-varying correlation; Guo et al. (2011) allow simultaneous mean

and variance shifts. The regime switching models of these papers analyze only the case

of normality of the distribution of the error term, which for the case of financial market

crisis and contagion, may ignore potentially important dimensions of financial market

data and contagion arising through non-linear dependence. Few papers do specify a

regime switching model with higher order moments. Ang and Timmermann (2011) is

one example, but they do not focus on contagion. Perhaps the most related in concept

to this paper is Rodriguez (2007) who identify time-varying higher order moment and

co-moments such as tail dependence using copulas.

A third contribution of this paper is that the non-linear RSSN model provides a

general framework for examining different types of transmission channels of financial

2Non-linear dependence estimates measure the probability of the worst event occurring in one
market given that a worst event occurs in another market, whereas linear dependence, which is
weighted by small and large returns, is not appropriate to evaluate the differential impact of large
versus small changes in returns (Bae et al., 2003; Garcia and Tsafack, 2007).
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market crisis and contagion through changes in the model parameters including of the

mean, variance, skewness, covariance and co-skewness.3 We are careful to distinguish

between a crisis where ‘own’moments experience a shift in a regime-specific parameter

of the RSSN model during a crisis regime, and a channel of contagion where a ‘cross-

market’moment (co-moment) experiences a shift in a regime-specific parameter of the

model during the crisis period. The crisis is captured in the mean-shift, variance-

shift and skewness-shift parameters of an asset. Contagion is captured through the

covariance-shift, and co-skewness-shift of an asset.

The fourth and fifth contributions of the paper are that the use of the RSSN model

allows for endogenous determination of many features of the model which are often not

possible in models of crisis and contagion. In particular, the model chooses whether a

country is deemed to be in crisis, and the crisis period is endogenously chosen by the

model. Most models of contagion do not allow an ‘own’crisis to be endogenous, and

the crisis duration usually relies on researcher choice.

The final contribution is the empirical application of the RSSN model to European

equity returns and US banking equity returns over a period which contains the Great

Recession. The empirical results show that the identification of a crisis (shift in “own”

parameters) is pervasive across equity markets through the variance-shift and skewness-

shift channels. The mean-shift channel is not operational at all. The contagion tests

through the covariance-shift and co-skewness-shift channels are significant in almost

every case, indicating the importance of changes in market dependence during a crisis.

The multivariate framework adopted allows the conduct of multiple-channel crisis and

contagion tests. These tests also show strong statistical evidence of the joint channels

during the Great Recession. The second order channels of both crisis and contagion

(i.e. volatility-shift and covariance-shift) are more evident than the first and third

order channels of mean-shift, skewness-shift and co-skewness-shift.

The paper proceeds as follows. Section 2 presents a RSSN model in which five types

of crisis and contagion channels are developed. Section 3 documents the Bayesian

estimation approach of the RSSN model including the Markov Chain Monte Carlo

(MCMC) sampling scheme for estimation of the model, along with the Bayesian model

comparison tools used to implement the tests. Section 4 outlines the tests for crisis

and contagion for each of the five channels. Section 5 presents the empirical analysis,

3The regime switching feature of the model means that the model parameters are allowed to differ
which deals with the heteroskedasticity problem arising in several methods caused by a volatility
increase during a crisis.
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and Section 6 provides some concluding comments.

2 Modeling Crisis and Contagion in the RSSN Frame-
work

A RSSN model is constructed in this section to provide a framework to analyze five

types of transmission channels of financial market crisis and contagion. Section 2.1

introduces the underlying multivariate skew-normal distribution and details its prop-

erties. Section 2.2 develops the RSSN model, while Section 2.3 extends the model to

include the channels of crisis and contagion.

2.1 The Skew-normal Distribution

This section builds on the skew-normal distribution developed by Sahu et al. (2003) to

provide a general framework to model crisis and contagion using a RSSN model. The

skew-normal distribution has the following latent variable representation:

yt = µ+ ∆Zt + εt, (1)

εt
iid∼ N (0,Σ) , (2)

Zt
iid∼ N (c1m, Im) 1 (Zjt > c, j = 1, . . . ,m) , (3)

where Zt = (Z1t, . . . , Zmt)
′ is an m-dimensional random vector with t = 1, . . . , T . 1m is

an m× 1 column of ones, Im is the identity matrix and 1 (·) is the indicator function.
The inclusion of the vector of latent variables Zt induces skewness in the distribution,

which enriches the dependence structure between the components of yt. Sahu et al.

(2003) assume that ∆ is a diagonal matrix. However, this assumption is restrictive

in the context of modeling crisis and contagion since the assumption of a diagonal

matrix does not allow for non-linear relationships between the components of yt. An

asymmetric dependence structure for yt is introduced here by relaxing the assumption

that ∆ is diagonal. Specifically, ∆ = (δij) is a full m × m co-skewness matrix with

i, j = 1, . . . ,m. The off-diagonal elements of ∆ are the co-skewness parameters which

control the asymmetric dependence structure between the components of yt.

The probability density function of yt marginally of Zt is

fSN (yt;µ,Σ,∆) =
2m

det (Σ + ∆2)1/2
fN

((
Σ + ∆2

)− 1
2 (yt − µ)

)
Pr (V > 0) , (4)
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where

V ∼ N
(

∆
(
Σ + ∆2

)−1
(yt − µ) , Im −∆

(
Σ + ∆2

)−1
∆
)
. (5)

fN (yt) is the density function of the standard multivariate normal distribution with

mean 0 and identity covariance matrix Im evaluated at yt. If ∆ = 0, then the skew-

normal distribution in equations (1) to (3) reduces to the usual multivariate normal

specification with the density given by

fN (yt;µ,Σ) =
1

det (Σ)1/2
fN

(
Σ−

1
2 (yt − µ)

)
. (6)

The dependence structure of yt, for different values of the parameters governing

the skew-normal distribution in equation (6) is illustrated in Figure 1. The Figure

plots the contours of the bivariate skew-normal density in equation (4) with zero mean

(µ = 0), identity scale matrix (Σ=I2) and various patterns of asymmetric dependence

(∆ = (δij), i, j = 1, 2). The center panel of Figure 1 illustrates the case of a symmetric

bivariate normal distribution with δ11 = δ22 = δ12 = δ21 = 0. The remaining panels

show how the parameters δij influence the dependence structure of yt, reminiscent of

the relationships expected in high frequency financial market data.

The second column of Figure 1 illustrates the effect of changing the level of skewness

(δ11 and δ22) in y1 and y2. The negative skewness values (δ11 = δ22 = −1.5) in the top

panel generates left skewness in comparison to the bivariate normal distribution in the

center. The positive skewness values (δ11 = δ22 = 1.5) in the bottom panel generates

right skewness. The first and third columns present the contour plots when the values

of the off-diagonal elements of the co-skewness matrix δ12 and δ21 are allowed to vary.

These parameters control the level of asymmetry between y1 and y2. The first column

presents three distributions for a negative value of co-skewness (δ12 = −1.2). The top

panel presents the interaction of the co-skewness term with negative skewness in both

assets (δii < 0). The second panel presents the case with no skewness (δii = 0), while

the bottom panel presents the case with co-skewness and positive skewness. The third

column presents the symmetric contour plots for the case when coskewness is positive.

The non-center panels of the figure emphasize the skewness and heavy tails generated

compared to the bivariate distribution in the center panel as the structure of skewness

and co-skewness within the distribution interact.
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2.2 The Regime Switching Skew-normal Model

The RSSN model is built on the regime switching model of Hamilton (1989) where

under each regime yt is assumed to have a multivariate skew-normal distribution. This

extension is useful for analyzing financial time series data as it captures the styl-

ized behavior of asset returns including asymmetry, heavy tails, heteroskedasticity,

time-varying linear and non-linear co-moments among asset markets, with controlling

parameters which are allowed to differ across states.

Consider the multivariate skew-normal distribution of a set of asset returns, yt, of

Section 2.1, but allowing for the model parameters to be state dependent as follows

yt = µst + ∆stZt + εt, (7)

εt
iid∼ N (0,Σst) , (8)

Zt
iid∼ N (c1m, Im) 1 (Zjt > c, j = 1, . . . ,m) . (9)

The regime st at time t is a binary variable that takes the values of 0 or 1, i.e.,

st ∈ {0, 1}. To focus the discussion on modeling crisis and contagion, the state st = 0

is called a non-crisis period and st = 1 a crisis period. In other words, there are two

sets of regime-dependent parameters: (µ0,∆0,Σ0) and (µ1,∆1,Σ1). To emphasize the

regime, the set of parameters (µl,∆l,Σl) is sometimes written as (µst=l,∆st=l,Σst=l)

for l = 0, 1.

The parameters of the model including the means, µst, co-skewness, ∆st , and the

error cross-covariances, Σst , are subject to change in different regimes identified by the

RSSN model. Equations (7) to (9) show that the regime parameters are given by µst=0,

∆st=0 and Σst=0 under regime 0, and are µst=1, ∆st=1 and Σst=1 under regime 1.

For estimation purposes, equations (7) to (9) are rewritten as

yt = Xtβst + εt, (10)

εt
iid∼ N (0,Σst) , (11)

where

Xt = (Im, Im ⊗ Z ′t) , βst =
(
µ′st , δ

′
st

)′
, δst = vec

(
∆′st
)
.

Here yt = (y1t, . . . , ymt)
′ is an m-dimensional random vector with t = 1, . . . , T, de-

pending on the latent variables, Zt = (Z1t, . . . , Zmt)
′, the error terms, εt, and the

regime process, st. Note that the dimensions of µst , δst and βst are m, k and (m+ k)

respectively with k = m2.
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To complete the model, the process governing the underlying state of the regime,

st, needs to be specified. To keep the model estimation tractable the regime process is

assumed to be independent of its own past history

Pr (st = 1|st−1 = 0) = Pr (st = 1|st−1 = 1) = pt, (12)

where the probability pt is a fixed constant that varies with time. The parameters of

the RSSN model are

Θ = (β0, β1,Σ0,Σ1) . (13)

For later reference, stack y = (y′1, . . . , y
′
T )′, Z = (Z ′1, . . . , Z

′
T )′ and s = (s1, . . . , sT )′.4

For convenience, let µi,l denote the i-th element of µl, l = 0, 1, and similarly define Σij,l

and ∆ij,l.

2.3 Channels of Crisis and Contagion

The flexibility of the RSSN model specified in Section 2.2 allows the identification of

five potentially important channels of crisis and contagion through changes in each

parameter of the model during financial crisis (st = 1) compared to non-crisis periods

(st = 0). The channels are as follows: i) a mean-shift crisis; ii) a variance-shift cri-

sis; iii) a skewness-shift crisis; iv) covariance-shift contagion; and v) co-skewness-shift

contagion. The difference between a “crisis” and “contagion” is that a crisis occurs

through parameter shifts within an own asset in a crisis regime compared to a non-

crisis regime, while contagion captures parameter shifts through the cross asset market

linkages. These types of crisis and contagion channels have been defined and analyzed

in the literature, but are often considered in isolation. Here, we have developed a

framework to analyze the five channels simultaneously. Each of the channels is defined

below.

2.3.1 Mean-shift Crisis

The first type of crisis channel is represented by a change in the mean of returns for

asset market i in the crisis period (st = 1) compared with the non-crisis period (st = 0),

given by

µi,st=1 6= µi,st=0.

4A alternative regime process for st may be a homogenous first-order Markov chain. This speci-
fication is common in the literature, but to ensure tractability of the current model is not assumed
here.
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This is similar to the mean-shift contagion proposed by Baur (2003). He uses the

mean parameter to capture an additional effect of a crisis after controlling for common

global shocks and country-specific shocks in a particular crisis period for a particular

asset market. In contrast to Baur (2003), we define this channel in terms of a crisis

rather than contagion because there are no crisis linkages between markets which are

controlled by this parameter.

2.3.2 Variance-shift Crisis and Covariance-shift Contagion

The second and third types of crisis and contagion channels are the variance-shift

crisis and covariance-shift contagion. These channels are associated with the second

order moments and co-moments of the variance and covariance. These channels are

respectively

Σii,st=1 6= Σii,st=0,

Σij,st=1 6= Σij,st=0, i 6= j.

The variance-shift crisis is interpreted as a change in return volatility of asset market

i during the crisis period (st = 1) compared to when st = 0.5

The third type of channel is covariance-shift contagion, which is a common focus in

the literature. It is described as a significant change in the linear co-movement of asset

returns between market i and j during a crisis period (st = 1) compared to a non-

crisis period (st = 0). This type of contagion is consistent with Forbes and Rigobon

(2002) and Corsetti, Pericoli and Sbracia (2005) who define contagion as a significant

change in correlation not related to changes in market fundamentals during a period

of financial turmoil.

The variance-shift crisis is different from the existing literature on volatility spillovers

(Edwards, 1998) and volatility contagion (Baur, 2003; King and Wadhwani, 1990;

Diebold and Yilmaz, 2009; and Chiang and Wang, 2011), which examine volatility

spillovers across markets in some form. These two works are closely related to the con-

tagion test through the co-volatility channel of Hsiao (2012), which in the framework

of this paper would be a test of contagion though the fourth order comoments which

are not considered here.
5Recent works focusing on volatility contagion are undertaken by King and Wadhwani (1990), Baur

(2003), Diebold and Yilmaz (2009), and Chiang and Wang (2011).
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2.3.3 Skewness-shift Crisis and Co-skewness-shift Contagion

The last two types of crisis and contagion channels are the skewness-shift crisis and

co-skewness-shift contagion. These channels are respectively given by

δii,st=0 6= δii,st=1 ,

δij,st=0 6= δij,st=1 , i 6= j.

A skewness-shift crisis manifests itself through a significant change in the tail behavior

of returns in asset market i during the non-crisis period (st = 0) compared with the

crisis period (st = 1). Yuan (2005) and Hsiao (2012) focus on skewness after a crash

with the former finding that the skewness of asset price distributions increases with

borrowing constraints and the latter finding that change in skewness are attributed to

volatility skew and smile effects.

Co-skewness-shift contagion is interpreted as a significant change in the asymmetric

dependence of returns between asset markets i and j between st = 0 and st = 1. This

type of contagion channel is examined in Fry, Martin and Tang (2010) and Fry, Hsiao

and Tang (2011).6

3 Bayesian Estimation of the RSSN Model

A Bayesian approach is used to estimate the states and the model parameters. More

specifically, MCMC methods are used to obtain draws from the posterior distribution

required for the analysis as documented in Sections 3.1 to 3.2. Section 3.3 outlines the

Bayesian model comparison techniques which form the basis of testing for crisis and

contagion.

6Co-skewness can take two forms. The first form is (1/T )
∑
(ri − µi)(rj − µj)2 where (ri − µi)

is the (demeaned) level of returns of the asset market i and (rj − µj)
2 is the variance of re-

turns of asset market j. The second form is (1/T )
∑
(ri − µi)

2(rj − µj). In this paper, the co-
skewness matrix is restricted to be a symmetric matrix, which means that coskewness is given by
(1/T )

∑
(ri−µi)(rj−µj)2+(1/T )

∑
(ri−µi)2(rj−µj)

2 .

9



3.1 Likelihood Function and Priors

The (complete-data) likelihood function of the RSSN model in equations (10) to (11)

is given by

f (y|Z,Θ,s) = (2π)−
mT
2

T∏
t=1

|Σst|
− 1

2 exp

{
−1

2

T∑
t=1

[
yt −Xtβst

]′
Σ−1
st

[
yt −Xtβst

]}
,

(14)

where Θ = (β0, β1,Σ0,Σ1) and st ∈ {0, 1}.
The priors for the model parameters are specified as

βst ∼ N
(
β, V β

)
, (15)

Σst ∼ IW (τΣ, SΣ) , (16)

Pr (st = 1) = pt, Pr (st = 0) = 1− pt, (17)

where IW (τΣ, SΣ) denotes the inverse-Wishart distribution with degree of freedom

τΣ and scale matrix SΣ. The prior mean for βst is set to β =
(
µ′, δ′

)′
, and the prior

covariance matrix for βst is set to V β =

[
φµIm 0

0 φδIk

]
, where k = m2.

3.2 Posterior Analysis

This section describes the Gibbs sampler used for estimating the RSSN model. It

follows from the Bayes rule that the joint posterior distribution is proportional to the

product of the (complete-data) likelihood function and the joint prior density, written

as

π (Θ, Z,s|y) ∝ f (y|Z,Θ,s) f (Z) f (s|Θ) π (Θ) , (18)

where f (Z) and f (s|Θ) are given in equations (9) and (17) respectively. Note that the

notation π denotes the prior and posterior density functions. The likelihood function

f (y|Z,Θ,s) is given in equation (14). By assuming prior independence between β and
Σ, the joint prior density is given by

π (Θ) = π(β0)π(β1)π(Σ0)π(Σ1). (19)

Posterior draws from the joint posterior distribution can be obtained via the fol-

lowing Gibbs sampler:

• Step 1: Specify starting values for Θ(0) =
(
β

(0)
0 , β

(0)
1 ,Σ

(0)
0 ,Σ

(0)
1

)
and Z(0), where

β
(0)
l =

(
µ

(0)′

l , δ
(0)′

l

)′
with l = 0, 1. Set counter loop = 1, ...n.
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• Step 2: Generate s(loop) from π
(
s|y, Z(loop−1),Θ(loop−1)

)
.

• Step 3: Generate β(loop)
l from π

(
βl|y, Z(loop−1),Σ

(loop−1)
l , s(loop)

)
.

• Step 4: Generate Σ
(loop)
l from π

(
Σl|y, Z(loop−1), β

(loop)
l , s(loop)

)
.

• Step 5: Generate Z(loop) from π
(
Z|y,Θ(loop), s(loop)

)
.

• Step 6: Set loop = loop+ 1 and go to Step 2.

The number of iterations set for Steps 2 to 5 is n. The first n0 of these are discarded

as “burn-in” draws, and the remaining n1 are retained to compute the parameter

estimates, where n = n0 + n1.

The full conditional distributions are given below and their derivations are presented

in Appendix A.1.

The posterior distribution for βl, l = 0, 1, conditional on y, Z,Σ0,Σ1 and s is an

m-variate normal distribution given by

(βl|y, Z,Σl, s) ∼ Nm

(
β̂l, Dβl

)
, l = 0, 1, (20)

whereDβl =

(
V −1
β +

T∑
t=1

1(st = l)X ′tΣ
−1
st Xt

)−1

and β̂l = Dβl

[
V −1
β β +

T∑
t=1

1(st = l)X ′tΣ
−1
st yt

]
.

The posterior distribution for Σl, l = 0, 1, conditional on y, Z, β0, β1 and s has an

inverse-Wishart distribution

(Σl|y, Z, βl, s) ∼ IW (τΣl , SΣl) , (21)

where τΣl = τΣ +
T∑
t=1

1(st = l) and SΣl = SΣ +
T∑
t=1

1(st = l)
(
yt −Xtβst

) (
yt −Xtβst

)′
.

Next, the latent variables Z1, . . . , ZT are conditionally independent given y, β0, β1,Σ0,Σ1

and s. In fact, each Zt has an independent truncated multivariate normal distribution

(Zt|y,Θ, s)
ind∼ N

(
Ẑt, DZt

)
1 (Zjt > c, j = 1, . . . ,m) , (22)

where DZt =
(
Im + δ

′

stΣ
−1
st δst

)−1

and Ẑt = DZt

(
c1m + δ

′

stΣ
−1
st

(
yt − µst

))
. A feasi-

ble sampling approach to obtain draws from the above truncated multivariate normal

distribution is to draw Zt component by component, where each component follows a

truncated univariate normal distribution given all other components. Draws from a
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truncated univariate normal distribution can be generated by using the inverse trans-

form method (Kroese et al. 2011, p.45).

To generate the regime variable st, the multi-move Gibbs sampling method is used.

Since the regime variable st evolves independently of its own past values, the regimes

s1, . . . , sT are conditionally independent of each other given the data and other para-

meters:

π (s|y, Z,Θ) =
T∏
t=1

π (st|y, Z,Θ) , (23)

where the success probability can be calculated as

Pr (st = 1|y, Z,Θ) =
π (st = 1|y, Z,Θ)

π (st = 0|y, Z,Θ) + π (st = 1|y, Z,Θ)
. (24)

Once the above probability is calculated, a random number from a uniform distribution

between 0 and 1 is generated to compare with the calculated value of Pr (st = 1|y, Z,Θ).

If the probability Pr (st = 1|y, Z,Θ) is greater than the generated number, the regime

variable st is set to 1; otherwise, st is set to 0.

3.3 Bayesian Model Comparison

Bayesian model comparison provides a unified approach for comparing non-nested mod-

els, and can be used as an alternative to classical hypothesis testing. Consider compar-

ing two models, namely, Mr and Mu. Evidence in favor of model Mr can be measured

by the Bayes factor, defined as

BFru =
p (y|Mr)

p (y|Mu)
, (25)

where p (y|Mr) and p (y|Mu) are the marginal likelihoods of the data under modelsMr

andMu respectively. Intuitively, the marginal likelihood p(y|Mr) is simply the marginal

distribution of the observables under model Mr evaluated at the actual data. If the

data are “improbable”under model Mr, the marginal likelihood would be “small”and

vice versa. Hence, the Bayes factor BFru, which is the ratio of the marginal likelihoods

under two models, assesses which model better predicts the data.

Furthermore, the posterior odds ratio for model Mr against model Mu is related to

their Bayes factor as follows

POru =
π (Mr)

π (Mu)
BFru, (26)
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where π (Mr) and π (Mu) are the prior probabilities of models Mr and Mu. Clearly, if

both models are equally likely a priori, then the Bayes factor is also the posterior odds

ratio of the two models.

Obtaining the Bayes factor generally involves computation of the marginal likeli-

hoods, which is often a diffi cult task. Two popular methods for calculating the marginal

likelihood in the literature are those of Gelfand and Dey (1994) and Chib (1995). How-

ever, if the two models under comparison are nested, i.e., if one model is a restricted

version of the other, then their Bayes factor can be calculated using the Savage-Dickey

density ratio (Verdinelli and Wasserman, 1995), which is often much simpler to com-

pute. Since hypothesis testing can be framed as comparing nested models, the density

ratio can be used to compute the relevant Bayes factor. The details of Savage-Dickey

density ratio are contained in Appendix A.2. Both approaches– computing the Bayes

factor via marginal likelihoods and Savage-Dickey density ratio– are adopted in this

paper. In each model comparison exercise, the more convenient approach and numeri-

cally stable approach is used.

To compare two models, model Mr is chosen over than model Mu if the Bayes

factor in favor of Mr (BFru) is suffi ciently large. The choice of threshold on which

this decision is made is based on the scale of evidence for model selection proposed by

Jeffreys (1961) as shown in Table 1. Table 1 shows the scale of the natural logarithm

of the Bayes factor, ln (BFru), which is used here to determine the strength of evidence

for selecting model Mr over model Mu.

4 Testing for crisis and Contagion

The tests for crisis and contagion using the Bayesian model comparison techniques

introduced in Section 3.3 are formally set out in this section. Sections 4.1 to 4.4 set

out the hypotheses for the different forms of crisis and contagion tests. Namely: i) the

mean-shift crisis test; ii) the variance-shift crisis test and the covariance-shift contagion

test; iii) the skewness-shift crisis test and the co-skewness-shift contagion test; and

finally; iv) the joint crisis and contagion tests which consider multiple channels of

crisis and contagion.

Table 2 presents a summary of the tests conducted in this paper. The table presents

the restricted model (Mr) for each test for the case of a single asset market, as well as

for a group of asset markets. The RSSN model is the unrestricted model (Mu) with two
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sets of regime-specific parameters: the regime-specific mean vectors µ0 and µ1 (each

of dimension m × 1), covariance matrices Σ0 and Σ1 (each of dimension m ×m) and
co-skewness matrices ∆0 and ∆1 (each of dimension m×m). Recall that µi,l denotes
the i-th element of µl, and similarly for Σij,l and ∆ij,l.

4.1 Mean-shift Crisis Test

Single market In examining the evidence for a crisis occurring in the mean-shift

channel based on changes in average returns of an asset market i, across states st = 0

and st = 1, consider testing the hypothesis µi,0 = µi,1. This can be recast as comparing

the unrestricted model Mu to the restricted one Mr where µi,0 = µi,1 is imposed. To

elaborate, Mu is the unrestricted model where all regime-specific parameters are free

to vary across the two periods of the non-crisis and crisis. Mr is the restricted model

and features no shift in the mean of the asset market i between the two regimes. This

implies that under the restricted model the average returns in the two periods remain

the same. Clearly, Mr is nested within Mu by setting µi,0 = µi,1. This is test T1 in

Table 2.

The Bayes factor comparingMr toMu for evidence of the mean-shift crisis channel

T1 can be computing using the Savage-Dickey density ratio

BFru =
π
(
µi,1 − µi,0 = 0|y,Mu

)
π
(
µi,1 − µi,0 = 0|Mu

) , (27)

where π
(
µi,1 − µi,0 = 0|y,Mu

)
and π

(
µi,1 − µi,0 = 0|Mu

)
are respectively the posterior

and prior densities of µi,1 − µi,0 evaluated at the point 0. Since the priors for µi,0 and

µi,1 are assumed to be normal with mean zero and variance φµ (see equation (15)),

the induced prior for µi,1− µi,0 is normal with mean zero and variance 2φµ. Moreover,

the quantity π(µi,1 − µi,0 = 0|y,Mu) can be estimated by averaging π(µi,1 − µi,0 =

0|y,Σ0,Σ1,∆0,∆1, s, Z,Mu) over the MCMC draws (which only involves evaluating

normal densities at 0).

Group of markets The test for a crisis of the mean-shift form across several asset

markets is also considered. The joint version of the test is denoted as TG1. In contrast

to the test for a crisis in an individual market described above using the elements

specific to market i (µi,0 and µi,1), the joint test for a mean-shift crisis for allm markets

utilizes the whole mean vectors µ1 and µ0 in the model comparison. The joint test of

a mean-shift crisis compares the restricted model Mr where the condition µ1 = µ0 is
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imposed with the unrestricted model Mu. Again, the relevant Bayes factor can be

computed using the Savage-Dickey density ratio, which involves evaluating m-variate

normal densities.

4.2 Variance-shift Crisis Test and Covariance-shift Contagion
Test

Single market The single market tests for crisis and contagion through the sec-

ond order channels are denoted as T2 for the variance-shift crisis test and T4 for the

covariance-shift contagion test.

For the variance-shift crisis test for an asset market i, the restricted model is con-

structed by imposing the condition Σii,0 = Σii,1. The Bayes factor comparing model

Mr with the unrestricted model Mu for evidence of the variance-shift crisis channel T2

is given by

BFru =
π(Σii,1 − Σii,0 = 0|y,Mu)

π(Σii,1 − Σii,0 = 0|Mu)
, (28)

where π(Σii,1−Σii,0 = 0|y,Mu) and π(Σii,1−Σii,0 = 0|Mu) are respectively the posterior

and prior densities for Σii,1 − Σii,0 evaluated at the point 0.

Equation (28) is slightly more diffi cult to evaluate. This is because although

both π (Σ0|y, Z, β0, s) and π (Σ1|y, Z, β1, s) are inverse-Wishart densities (see (21)),

π (Σii,1 − Σii,0|y, Z, β0, β1, s) is not a known density. However, using Gaussian kernel es-

timates to approximate the two quantities π(Σii,1−Σii,0 = 0|y,Mu) and π(Σii,1−Σii,0 =

0|Mu), the Bayes factor in equation (28) can still be estimated in a straightforward fash-

ion. The details of the Gaussian kernel method for evaluating densities introduced by

Geweke (2010) are discussed in Appendix A.3.

For the covariance-shift contagion test between asset markets i and j, the relevant

restricted model is the one where the condition Σij,0 = Σij,1, i 6= j, is imposed. This

is a test of contagion through the covariance channel between asset markets i and j,

which is test T4 in the table. The relevant Bayes factor can be computed using the

Gaussian kernel estimates as discussed above.

Group of markets Tests for joint crisis and joint contagion across the m asset

markets through the variance-shift crisis (TG2) and covariance-shift contagion (TG4)

channels are also considered. In the first test, the relevant restriction is Σii,0 = Σii,1, i =

1, . . . ,m. In this case, the Bayes factor comparing the restricted model Mr against

the unrestricted one Mu can be estimated using the Savage-Dickey density ratio with

15



Gaussian kernel estimates. In the second test, the relevant restriction is Σ0 = Σ1.

In this case, the marginal likelihoods– for the unrestricted model and the restricted

version with Σ0 = Σ1 imposed– are first obtained in order to compute the Bayes factor.

4.3 Skewness-shift Crisis Test and Co—skewness-shift Conta-
gion Test

Single market The single market tests for crisis and contagion through the third

order channels are denoted as T3 for the skewness-shift crisis test and T5 for the co-

skewness-shift contagion test. The restricted model for the crisis test through changes

in return skewness is constructed by setting the i-th diagonal element of the co-skewness

matrices between the non-crisis and crisis periods to be the same, i.e., δii,0 = δii,1. The

Bayes factor comparing models Mr and Mu is then

BFru =
π (δii,1 − δii,0 = 0|y,Mu)

π (δii,1 − δii,0 = 0|Mu)
. (29)

The denominator of this expression can be calculated since the induced prior for δii,1−
δii,0 is normal with mean zero and variance 2φδ. The numerator of equation (29) can be

estimated by averaging the quantity π (δii,1 − δii,0 = 0|y, Z,Σ0,Σ1, s) over the MCMC

draws.

The co-skewness-shift contagion test (T5) uses the restricted model where δij,0 =

δij,1, i 6= j, and the rest follows as above.

Group of markets Two joint tests are also considered: test for crisis based on

changes in return skewness (TG3) and test for contagion based on changes in co-

skewness (TG5) across the m asset markets. In the first case, the restricted model is

δii,0 = δii,1, i = 1, . . . ,m, whereas for the second case, the restriction is δ0 = δ1. As

before, the relevant Bayes factors are computed using the Savage-Dickey density ratio

for the former, and marginal likelihoods for the latter.

4.4 Multiple Channels of Crisis and Contagion Tests

The flexibility of the RSSN model enables the testing of multiple channels of crisis

and contagion. Eight types of joint tests of crisis and contagion are examined based

on significant changes in the possible combinations of switching model parameters

including the mean, variance, covariance, skewness and co-skewness during the crisis

period compared to the non-crisis period. Four of these tests are to test for a crisis
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in asset market i based on identification of the joint crisis through: i) the mean- and

variance-shift channels (JT1); ii) the mean- and skewness-shift channels (JT2); iii)

the variance- and skewness-shift channels (JT3); and iv) the mean-, variance- and

skewness-shift channels (JT4). There is one joint test of contagion only (JT5) which

is to test for financial contagion between asset markets i and j through the covariance-

and co-skewness-shift channels. The remaining tests for joint crisis and contagion

in a group of m asset markets through: i) the mean-, variance- and covariance-shift

channels (JT6); ii) the mean-, skewness- and co-skewness-shift channels (JT7); and

iii) the mean-, variance-, covariance-, skewness- and co-skewness-shift channels (JT8)

which represents a test of all channels operating.

In all the tests, the RSSN model is the unrestricted model with two sets of regime-

specific parameters: µ0 and µ1, Σ0 and Σ1, and ∆0 and ∆1. The choice of restricted

model Mr for use in the calculation of the Bayes factor depends on which parameters

of the unrestricted model are constrained. For instance, the restricted model for JT1

is one with the restrictions µi,0 = µi,1 and Σii,0 = Σii,1, if the joint test of a crisis for

asset market i through the mean and variance channels is conducted. The restrictions

on the model parameters are summarized in Table 2.

5 Empirical Analysis

5.1 Data and Descriptive Statistics

The use of the RSSN model for measuring financial market crisis and contagion is il-

lustrated using European equity and US banking data from January 4, 2005 to August

31, 2009 which includes the Great Recession crisis period. The sample period is chosen

to end prior to the European debt crisis to avoid complications in the modeling frame-

work through the existence of more than two regime possibilities. The data consist of

daily percentage returns of equity market indexes of four European countries (France,

Germany, Greece and Italy) and daily percentage returns of the US banking market

index. The daily percentage returns are calculated as 100 times the log first difference

of the value of the equity indices. There are T = 1215 observations for each series. All

series are denominated in US dollars.7

7All data are collected from Datastream. The mneumonics are: France - CAC 40 price index
(FRCAC40); Germany - MDAX Frankfurt price index (MDAXIDX); Greece - ATHEX Composite
price index (GRAGENL); Italy - FTSE MIB price index (FTSEMIB), the US - US-DS Banks price
index (BANKSUS).
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Time series plots of the returns are contained in Figure 2. The period of financial

market crisis is clearly shown in the Figure with the volatility of the equity returns

changing dramatically in all markets during the period extending from July 2007 to

August 2009. Table 3 summarizes the statistics of the returns of the five markets.

Both France and Germany show positive mean daily returns, while Greece, Italy and

the US banking sector have negative mean returns. The standard deviation of the

US banking sector returns are the highest among the markets. In terms of the higher

order moments, non-normality of all returns is apparent from the coeffi cients of skew-

ness and kurtosis. For example, over the sample period, the value of skewness ranges

from −0.376 for Greece to 0.221 for the US banking sector and the value of kurtosis

ranges from 9.049 for Germany to 14.019 for the US banking sector, suggesting that all

returns exhibit a fat-tailed and leptokurtic distribution. Finally, the null hypothesis of

normality is strongly rejected based on the Jarque-Bera test for all equity returns.

5.2 Parameter Estimation

In line with the literature on models of contagion, market fundamentals and interde-

pendences are controlled for by estimating a vector autoregressive model (VAR), and

using the residuals of the VAR as the data yt in equation (10). The lag length is set to

L = 5 based on the selection criteria of the sequential modified log-likelihood ratio test

statistic, Akaike’s final prediction error and the Akaike Information Criterion. As is

customary, prior hyperparameters in equations (15) to (17) are assumed to be known,

and are set to be β = 0, φµ = 0.01, φδ = 1, τΣ = 20 +m+ 1, SΣ = (τΣ −m− 1)× Im

with m = 5. The prior variances are chosen to be relatively small, so that the prior

distributions are proper and relatively informative.

This paper relaxes the need for strong assumptions usually adopted in the contagion

literature about the dating of crisis periods and non-dogmatic beliefs about the likeli-

hoods of crisis episodes occurring are incorporated formally via the prior probabilities

pt = Pr (st = 1) = 1−Pr (st = 0). Specifically, the initial value for the probability of be-

ing in regime 0 (non-crisis period) is set to Pr (st = 0) = 0.9999 during the period from

January 4, 2005 to June 30, 2007 and that of being in regime 0 is set to Pr (st = 0) =

0.0001 during the period between March 3, 2008 and August 31, 2009. The probability

of being in regime 0 decreases linearly from 0.9999 on July 1, 2007 to 0.0001 on Au-

gust 31, 2009 with the margin of
(

1
177
× (0.9999− 0.0001)

)
per day. For instance, The

probability of being in regime 0 on July 2, 2007 is 0.9999 −
(

1
177
× (0.9999− 0.0001)

)
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where there are 177 days between June 30, 2007 and March 3, 2008.

For estimation purposes, the co-skewness matrix ∆ in equation (1) is restricted to

be a symmetric matrix, which means that the dimension of δ reduces from k = m2 to

k = m(m + 1)/2. Furthermore, the constant term c in equation (3) is set to −
√

2/π

so that E (Zt) = 0 and V (Zt) = (π − 2) /π, and the inclusion of the latent variables

Zt does not affect the (unconditional) expectation of yt. In the original specification of

Sahu et al. (2003), c is set to be zero.

The procedure for Gibbs-sampling described in Section 3.2 is applied to the RSSN

model. The first 10, 000 draws are discarded to allow the Markov Chain to converge to

the stationary distribution. In order to reduce sample autocorrelation and to also avoid

biased Monte Carlo standard errors, every 10 draws for the next 200, 000 iterations are

recorded, for a total of 20, 000 draws used for posterior summaries. The criteria of

choosing independent draws is based on the ineffi ciency factors with the details shown

in Appendix A.4. The ineffi ciency factors of the switching parameters are reported in

Table 4. The MCMC algorithm is well behaved in the RSSN model since the results

of Table 4 indicate the low ineffi ciency factors for all of the switching parameters.

Table 5 presents the estimates (posterior means) of the regime-switching parameters

when innovations are fitted to the RSSN model with two regimes for the five equity

markets. The first panel of the table presents the results for regime st = 0 where

there is no crisis, while the second panel presents the results for regime st = 1 where

all markets are in crisis. Figure 3 presents the probability that the model is in a

particular regime over the time period. A value of 0 represents a non-crisis regime, and

a value of 1 represents a crisis regime. Inspection of the figure shows that apart from

a brief period of a crisis regime in January 2006, the crisis regime began to become

evident in January of 2007, and by February 2008 was consistently in the crisis regime.

As expected, in the non-crisis period average returns are positive for all markets,

while they are negative or close to zero for all markets in the crisis period (st = 1).

Furthermore, the variance and covariance between equity returns for all markets are

much higher during the crisis regime compared with the non-crisis regime. For example,

the variance of returns in the US banking sector which is the most dramatic, increases

from nearly 0.60% when st = 0, to 15.80% when st = 1. European countries follow the

US banking sector with variances of under 1% when st = 0, to that of over 3% when

st = 1. The covariance between equity returns also show a dramatic increase during

the crisis period, indicating that equity returns between the two markets are strongly
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correlated in the crisis period.

As for co-skewness structure, the table indicates that return skewness and asym-

metric dependence between equity returns switch from being negative when st = 0,

to positive when st = 1 in most cases. The return skewness ranges from −0.649 for

Greece to 0.160 for the US banking sector when st = 0, and from 0.303 for Germany to

3.045 for the US banking sector when st = 1. In addition, the asymmetric dependence

between equity returns increases or moves to the right during the crisis period for all

cases except for the dependence relation between the US banking sector and European

equity markets.

5.3 Crisis and Contagion in the Great Recession

The Bayes factors to evaluate the evidence for crisis and contagion through the first to

third order channels are conducted in this Section on the sample of European and US

equity market returns for the Great Recession period. Table 6 consists of three panels,

presenting the results of the crisis tests, the contagion tests and the crisis and contagion

tests respectively. The table is divided into a panel examining the evidence of crisis

through mean-shift, variance-shift and skewness-shift channels; a panel examining the

evidence of contagion from the US banking market returns through the European equity

returns through covariance-shift and co-skewness-shift channels; and a final panel that

considers joint tests of crisis and contagion. The first five columns present results for

each country, while the last column presents the evidence considering the operation of

each channel for all markets jointly. Refer to Table 1 for the evidence categories for

the decision rule for the Bayesian model comparison to determine the strength of the

evidence for the null hypothesis in each case.

5.3.1 Evidence of Crisis

The results of the tests for crisis reinforce the need to consider higher order moments

when analyzing crisis period data. Inspection of the first panel of Table 6 shows the

crisis channels during the Great Recession (st = 1) . The results for the mean-shift crisis

tests show no evidence of a financial market crisis through the mean-shift channel in any

of the own equity markets during the Great Recession (tests T1 in the Table). Further,

the joint test of crisis through the mean-shift channel (TG1) also shows no evidence of

crisis through the mean-shift channel where all markets are considered simultaneously.

The higher order moment tests of crisis find more evidence. The variance-shift crisis
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channel shows decisive evidence of crisis for all markets (tests T2 in the Table) , in-

cluding for the joint test of crisis through the variance-shift channel (TG2). The third

order own moment channel of a skewness-shift crisis gives mixed results with a crisis

only decisively evident in the equity market in France and in the US banking market,

and is strongly evident in Italy (see the results for test T3). Greece and Germany are

not affected by a crisis through the skewness channel. The joint tests of the various

combinations of mean-shift, variance-shift and skewness-shift crisis channels for the

single markets (tests JT1 to JT4) and the group of markets considered jointly (tests

JTG1 to JTG4) all indicate either decisive or strong evidence of crisis in the combined

channels except for the combined mean-shift and skewness-shift channel for Greece

(test JT2 for Greece in Table 6). Overall, the results indicate that it is the variance-

shift channel which is most important for own country parameter changes, followed by

the skewness-shift channel, with the mean-shift channel the least important.

5.3.2 Evidence of Contagion

The second panel of Table 6 shows which channels of contagion are important in ex-

plaining movements of the second and third order co-moments of the asset returns

during the Great Recession period where st = 1, with the assumption that the relevant

link to observe is that of contagion between the US and each of the European markets.

The covariance-shift channel of contagion between the US banking equity returns and

the European equity market returns (tests T4 in Table 6) shows decisive evidence of

contagion with the value of the log of the Bayes factor ln (BFru) ranging from −51.65

to −101.09.

Thematically, the results for the contagion channels are similar to those of the

crisis channels in that evidence of contagion is stronger through the second order co-

moments than through the third order co-moments. Inspection of the co-skewness-

shift channel of contagion in test T5 reveals that the co-skewness-shift channel is not

in operation between the US banking returns and the Greek equity returns during

the Great Recession, with the log of the Bayes factor ln (BFru) being −1.37. There is

decisive evidence of contagion through all other channels, with the value of the log of the

Bayes factor ln (BFru) ranging from −5.32 to −7.88 for the other European countries

markets. The bottom row of the second panel of Table 6 considers the possibility that

contagion between the US and each of the European markets may occur through both

the covariance-shift and the co-skewness-shift channels simultaneously (Test JT5 in the
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table). This is indeed the case, with decisive evidence of contagion through the two

channels. When considering the tests TG4 and TG5 which examine the evidence for

contagion amongst all five market simultaneously through the covariance-shift and the

co-skewness-shift channels respectively, there is decisive evidence of contagion through

each of these channels in both cases.

5.3.3 Evidence of Joint Crisis and Contagion

The third panel of Table 6 provides evidence on the operation of crisis and conta-

gion channels simultaneously occurring for all markets. Although there is a multitude

of combinations of crisis and contagion channels that can be considered, here three

joint forms are evaluated to illustrate the possibility of the operation of multiple chan-

nels. The evidence of the operation of crisis and contagion through equity markets

are pervasive across European equity markets and the US banking sector through the

combinations of multiple channels of crisis and contagion during the Great Recession.

More specifically, the crisis and contagion effects based on the JT8 where all channels

of crisis and contagion are operating are almost double those of the JT6 and JT7 com-

binations, as the value of the natural logarithm of the Bayes factor (ln (BFru)) based

on JT8 is −1033.20 and for JT6 and JT7 are −462.60 and −568.22 respectively. The

results of this Section suggests the importance of examining changes in market linear

and non-linear dependence during the Great Recession. The examination of just one

channel of crisis and contagion (such as only focusing on correlation, or only focusing

on co-skewness channels of contagion) is likely to be misleading in understanding the

flow of a crisis.

6 Conclusions

This paper introduced a regime switching skew-normal model built upon the regime

switching model of Hamilton (1989) but with relaxation of the assumption of the

distribution of the error term which was assumed here to be a multivariate skew-normal

distribution. This new approach provided a more general framework for developing

five types of crisis and contagion channels based on identifying changes in the model

parameters over the two regimes of the non-crisis and crisis periods. The framework

also allowed for the development of a class of joint tests of crisis and contagion through

changes in the possible combinations of regime switching parameters during a crisis
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compared with the non-crisis period.

Measuring financial contagion within the RSSN model solved several econometric

problems faced in the crisis and contagion literature. First, market dependence was

fully captured by simultaneously considering both second and third order co-moments

of asset returns, which detected the importance of changes in market linear and non-

linear dependence during a crisis which was defined to be contagion. Second, alternative

transmission channels of crisis and contagion were examined simultaneously. Third, the

market in which crisis originated did not need to be defined and crisis and contagion

were distinguished from each other. Fourth, the source crisis market was determined

by the model rather than by the researcher, and finally, the timing of a financial crisis

was endogenously determined by the model itself rather than being arbitrary chosen

as is the case in the majority of work on financial market crisis. This occurred through

the regime switching parameters which differed across regimes. This had the added

advantage of dealing with the heteroskedasticity problem that arises in the simple

correlation and co-skewness measures of contagion caused by volatility increases during

a crisis.

This framework was applied to test for financial market crisis and contagion through

single and multiple channels in each equity market over the period 2005 to 2009, which

includes the Great Recession period. The empirical results showed strong evidence of a

crisis channel across equity markets over Europe and the US through single channels of

a variance-shift and skewness-shift. The exception was that there was no crisis evident

in the mean-shift channel. The second finding was that the joint channel crisis and

contagion tests showed strong statistical evidence of significant effects in both Europe

and the US during the Great Recession period.
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A Appendix

A.1 The Gibbs Sampler for the RSSN Model
The details of the MCMC algorithm are described below. By assuming prior indepen-
dence between β and Σ, the joint prior density π (Θ) is given by multiplying equations
(15) and (16)

π (Θ) =
1∏
l=0

π(βl)× π(Σl) (30)

∝
1∏
l=0

(2π)−
m
2

∣∣V β

∣∣− 1
2 exp

{
−1

2

(
βl − β

)′
V −1
β

(
βl − β

)}
×
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2−

τΣm

2 Γm

(τΣ

2

))−1

|SΣ|
τΣ
2 |Σl|−
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2 exp

(
−
tr
(
SΣΣ−1

st

)
2

)
.
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To calculate the posterior density, the complete-data likelihood function is combined
with the joint prior density via Bayes rules. It is given by

π (Θ, Z, s|y) ∝ f (y|Z,Θ,s) f (Z) f (s|Θ)π (Θ) , (31)

= (2π)−
T
2

T∏
t=1

|Σst |
− 1

2 exp

{
−1

2

T∑
t=1

[
yt −Xtβst

]′
Σ−1
st

[
yt −Xtβst

]}
×f (Z) f (s|Θ)π (Θ) ,

where y = (y′1, . . . , y
′
T )′, Z = (Z ′1, . . . , Z

′
T )′ and s = (s1, . . . , sT )′. f (Z) and f (s|Θ) are

provided in equations (9) and (17), respectively. Posterior draws can be obtained using
the Gibbs sampler. Specifically, we sequentially draw from π (β0, β1|y, Z,Σ0,Σ1, s),
π (Z|y, β0, β1,Σ0,Σ1, s), π (Σ0,Σ1|y, Z, β0, β1, s) and π(s|y, β0, β1,Σ0,Σ1, Z).
In the first step, π (βl|y, Z,Σ, s) , l = 0, 1, is a normal density. To see this, write

log π (βl|y, Z,Σ0,Σ1, s) = log f (y|Z,Θ, s) + log π (Θ) + constant (32)

∝ −1

2

(
βl − β

)′
V −1
β

(
βl − β

)
−1

2

T∑
t=1

[
yt −Xtβst

]′
Σ−1
st

[
yt −Xtβst

]
,

∝ −1

2
β′l

(
V −1
β +

T∑
t=1

1(st = l)X ′tΣ
−1
st Xt

)
βl

+β′st

[
V −1
β β +

T∑
t=1

1(st = l)X ′tΣ
−1
st yt

]
,
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)−1

, β̂l = Dβl
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,

which is the kernel of an m-variate normal density with mean vector β̂l and covariance

matrix Dβl . In other words, (βl|y, Z,Σ0,Σ1, s) ∼ Nm

(
β̂l, Dβl

)
.

Next, following a similar argument, π (Z|y,Θ, s) is a normal density. To see this,
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using equations (14) and (9)

log π (Z|y,Θ, s) = log f (y|Z,Θ, s) + log f (Z) + constant (33)
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2
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That is, (Zt|y,Θ, s) ∼ Nm
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)
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Finally, the log conditional density π (Σl|y, Z, β0, β1, s) is derived and given by

log π (Σl|y, Z, β0, β1, s) = log f (y|Z,Θ, s) + log π (Θ) + constant (34)
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which is the kernel of an inverse-Wishart distribution. In fact, (Σl|y, Z, β0, β1, s) ∼
IW (τΣl , SΣl), where

τΣl = τΣ +
T∑
t=1

1(st = l), SΣl = SΣ +
T∑
t=1

1(st = l)
(
yt −Xtβst

) (
yt −Xtβst

)′
.

A.2 The Savage-Dickey Density Ratio
The Savage-Dickey density ratio introduced by Dickey (1971) is a specific representation
of the Bayes factor for comparing nested models.
Suppose θ = (ψ, ω) is the vector of model parameters in the unrestricted modelMu.

The likelihood and prior for this model are denoted as f (y|ψ, ω,Mu) and π (ψ, ω|Mu).
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Suppose the restricted model Mr can be characterized as ψ = ψ0, where ψ0 is a
constant vector, while the parameter vector ω free to vary. The likelihood and prior
for the restricted model are then denoted as f (y|ω,Mr) and π (ω|Mr). Suppose the
priors for the two models satisfy

π (ω|ψ = ψ0,Mu) = π (ω|Mr) . (35)

Under this condition, Verdinelli and Wasserman (1995) show that the Bayes factor
comparing Mr to Mu has the form

BFru =
p (ψ = ψ0|y,Mu)

p (ψ = ψ0|Mu)
, (36)

where p (ψ = ψ0|y,Mu) and p (ψ = ψ0|Mu) are respectively the posterior and prior
densities for ψ under the unrestricted model evaluated at the point ψ0. Equation (36)
is referred to as the Savage-Dickey density ratio.

A.3 A Gaussian Copula for Evaluating Probability Densities
The following approach of using a Gaussian copula for approximating a probability
density function at a specified point is developed by Geweke (2010). Consider the
random vector u with q components,

u = (u1, . . . , uq) . (37)

Suppose u(1), . . . , u(B) are independent and identically distributed draws from the prob-
ability density function p(u). Then p(u0), the density function evaluated at the point
u0, can be approximated using the following steps:
Step 1: Using a Gaussian kernel to compute the approximations

pi (ui) = c−1 1

B

B∑
b=1

φ

(
ui − u(b)

i

c

)
, Pi (ui) = c−1 1

B

B∑
b=1

Φ

(
ui − u(b)

i

c

)
(38)

for i = 1, . . . , q, where φ(·) and Φ(·) are respectively the probability density func-
tion and cumulative distribution function of the standard normal distribution. This
approximation is computed at each draws, i.e., ui = u

(b)
i , b = 1, . . . , B.

Step 2: Using this approximation transform the sampled u(b)
i to the normal distri-

bution w(b)
i ,

w
(b)
i = fi

(
u

(b)
i

)
, (39)

where fi (·) = Φ−1 [Pi (·)], and define

w(b) =
(
w

(b)
1 , . . . , w(b)

q

)
, (40)

where l = 1, . . . , L.

29



Step 3: Approximate the variance as an (q × q) matrix,

Σ =
1

B

B∑
b=1

w(b)w(b)′. (41)

since the mean vector 1
B

B∑
b=1

W (b) ≈ 0.

Step 4: Estimate the value of function fi (·) at the specified point u0 similarly to
step 2.

w0
i = fi

(
u0
i

)
, f ′i
(
u0
i

)
(42)

for i = 1, . . . , q.
Step 5: Finally, compute

p(u0) = φ
(
w0; 0,Σ

) q

Π
i=1
f ′i
(
u0
i

)
. (43)

A.4 Effi ciency of the MCMC Algorithm
A common diagnostic of MCMC effi ciency is the ineffi ciency factor, defined as

IF = 1 + 2
L∑
l=1

ρ (l) ,

where ρ (l) is degree of correlation quantified by the autocorrelation function given by

ρ (l) =
1

T

T∑
t=1

XtXt−l,

whereXt is a sequence for dates t = 1, . . . , T and l represents the lags. L is chosen to be
large enough so that the autocorrelation tapers off. To interpret the ineffi ciency factor,
note that independent draws from the posterior would give an ineffi ciency factor of
1. Ineffi ciency factors indicate how many extra draws need to be taken to give results
equivalent to independent draws. For instance, if 50, 000 draws of a parameter are
taken and an ineffi ciency factor of 100 is found, then the draws are equivalent to 500
independent draws from the posterior.
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Figure 1: Contour plots of bivariate skew-normal density obtained from equation (4)
with zeros mean (µ = 0), identity scale matrix (Σ = I2) and different values of asym-
metric dependence δij. The central panel corresponds to a symmetric multivariate
normal distribution with δ11 = δ22 = δ12 = δ21 .
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Figure 2: Daily percentage equity returns of France, Germany, Greece and Italy and
banking equity returns for the US over the period January 1, 2005 to August 31, 2009.
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(st = 1) . A value of 0 represents the non-crisis regime and a value of 1 represents the
crisis regime. The results come from the Gibbs-sampling.

Table 1:
Evidence categories for the log of the Bayes Factor used for the model selection based
on Jeffreys rule (Jeffreys, 1961). Note that ln (BFru) = ln (p (y|Mr))− ln (p (y|Mu)).

ln (BFru) Evidence against the null hypothesis

(0,∞) Evidence supports model Mr

(−1.15, 0) Very slight evidence supports model Mu

(−2.30,−1.15) Slight evidence supports model Mu

(−4.60,−2.30) Strong evidence supports model Mu

(−∞,−4.60) Decisive evidence supports model Mu
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Table 3:
Summary statistics of the daily percentage equity returns of France, Germany, Greece
and Italy and banking equity returns for the US over the period January 4, 2005 to
August 31, 2009. The Jarque-Bera statistic is denoted by JB which under the null of
normality is distributed as a χ2 (2). An * indicates that the JB statistic is significant

at the 5% level.

Statistic France Germany Greece Italy US Bank

Mean 0.001 0.023 -0.006 -0.021 -0.063
Minimum -11.737 -11.326 -11.366 -10.864 -21.678
Maximum 12.143 11.887 12.084 12.381 19.341
Std. Dev. 1.800 1.886 1.825 1.792 3.215
Skewness 0.104 -0.121 -0.376 0.026 0.221
Kurtosis 12.724 9.049 9.450 11.961 14.019
JB test 4788.658 * 1855.213 * 2134.998 * 4065.053 * 6157.082 *
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Table 4:
Ineffi ciency factors of the parameters. The parameters are estimated based on the

RSSN model with two regimes denoted by st = 0 and st = 1.

Parameters µi Σij δij
st = 0 st = 1 st = 0 st = 1 st = 0 st = 1

i = 1, j = 1 1.00 1.00 1.20 1.00 1.33 1.26
i = 2, j = 2 1.00 1.00 1.22 1.00 1.17 1.43
i = 3, j = 3 1.00 1.00 1.53 1.00 2.51 2.24
i = 4, j = 4 1.00 1.00 1.16 1.00 1.24 1.21
i = 5, j = 5 1.00 1.00 1.11 1.00 1.28 1.00
i = 1, j = 2 - - 1.22 1.00 1.40 1.48
i = 1, j = 3 - - 1.44 1.00 2.65 1.44
i = 1, j = 4 - - 1.18 1.00 1.33 1.25
i = 1, j = 5 - - 1.10 1.00 1.39 1.00
i = 2, j = 3 - - 1.42 1.00 1.95 1.76
i = 2, j = 4 - - 1.21 1.00 1.45 1.27
i = 2, j = 5 - - 1.10 1.00 1.29 1.00
i = 3, j = 4 - - 1.37 1.00 2.37 1.00
i = 3, j = 5 - - 1.20 1.00 2.26 1.00
i = 4, j = 5 - - 1.10 1.00 1.65 1.00
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Table 5:
Posterior means of switching parameters including mean, covariance and co-skewness.
The results are estimated based on the RSSN model with two regimes of non-crisis
and crisis using Bayesian Gibbs-sampling approach. Five equity markets including
France, Germany, Greece, Italy and the US banking sector are examined during the

period between January 10, 2005 to August 31, 2009.

Posterior means Market France Germany Greece Italy US

Regime st = 0 - non-crisis period

Mean (µst=0) 0.034 0.046 0.058 0.026 0.023

Covariance (Σst=0) France 0.523 0.445 0.294 0.402 0.127
Germany 0.445 0.638 0.350 0.375 0.122
Greece 0.294 0.350 0.684 0.277 0.022
Italy 0.402 0.375 0.277 0.479 0.099
US 0.127 0.122 0.022 0.099 0.599

Co-skewness (∆st=0) France -0.526 -0.568 -0.367 -0.473 -0.246
Germany -0.568 -0.619 -0.443 -0.509 -0.302
Greece -0.367 -0.443 -0.649 -0.329 -0.282
Italy -0.473 -0.509 -0.329 -0.426 -0.229
US -0.246 -0.302 -0.282 -0.229 0.160

Regime st = 1 - crisis period

Mean (µst=1) -0.010 -0.028 -0.044 0.004 0.002

Covariance (Σst=1) France 4.129 3.912 3.062 3.895 7.350
Germany 3.912 4.578 3.299 3.833 7.548
Greece 3.062 3.299 3.928 3.077 6.132
Italy 3.895 3.833 3.077 4.292 7.357
US 7.350 7.548 6.132 7.357 15.802

Co-skewness (∆st=1) France 0.417 0.473 1.058 0.463 -1.404
Germany 0.473 0.303 1.033 0.552 -1.551
Greece 1.058 1.033 0.361 1.048 -1.098
Italy 0.463 0.552 1.048 0.493 -1.266
US -1.404 -1.551 -1.098 -1.266 3.045
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